Network-based multi-omics integrative analysis methods in drug discovery: a systematic review

被引:3
作者
Jiang, Wei [1 ]
Ye, Weicai [2 ]
Tan, Xiaoming [1 ]
Bao, Yun-Juan [1 ,3 ]
机构
[1] Hubei Univ, Sch Life Sci, Wuhan, Peoples R China
[2] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangdong Prov Key Lab Computat Sci, Natl Engn Lab Big Data Anal & Applicat, Guangzhou, Peoples R China
[3] 368 Youyi Ave, Wuhan 430062, Peoples R China
关键词
Multi-omics; Biological network; Drug discovery; Precision medicine; Network analysis; Data integration; KNOWLEDGEBASE; BIOLOGY; GENES; IDENTIFICATION; HETEROGENEITY; MEDICINE; RESOURCE; GENOMICS; PATHWAY; CANCERS;
D O I
10.1186/s13040-025-00442-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of multi-omics data from diverse high-throughput technologies has revolutionized drug discovery. While various network-based methods have been developed to integrate multi-omics data, systematic evaluation and comparison of these methods remain challenging. This review aims to analyze network-based approaches for multi-omics integration and evaluate their applications in drug discovery. We conducted a comprehensive review of literature (2015-2024) on network-based multi-omics integration methods in drug discovery, and categorized methods into four primary types: network propagation/diffusion, similarity-based approaches, graph neural networks, and network inference models. We also discussed the applications of the methods in three scenario of drug discovery, including drug target identification, drug response prediction, and drug repurposing, and finally evaluated the performance of the methods by highlighting their advantages and limitations in specific applications. While network-based multi-omics integration has shown promise in drug discovery, challenges remain in computational scalability, data integration, and biological interpretation. Future developments should focus on incorporating temporal and spatial dynamics, improving model interpretability, and establishing standardized evaluation frameworks.
引用
收藏
页数:29
相关论文
共 132 条
[21]   The CPTAC Data Portal: A Resource for Cancer Proteomics Research [J].
Edwards, Nathan J. ;
Oberti, Mauricio ;
Thangudu, Ratna R. ;
Cai, Shuang ;
McGarvey, Peter B. ;
Jacob, Shine ;
Madhavan, Subha ;
Ketchum, Karen A. .
JOURNAL OF PROTEOME RESEARCH, 2015, 14 (06) :2707-2713
[22]   Gene regulatory network inference based on causal discovery integrating with graph neural network [J].
Feng, Ke ;
Jiang, Hongyang ;
Yin, Chaoyi ;
Sun, Huiyan .
QUANTITATIVE BIOLOGY, 2023, 11 (04) :434-450
[23]   MGNN: A Multimodal Graph Neural Network for Predicting the Survival of Cancer Patients [J].
Gao, Jianliang ;
Lyu, Tengfei ;
Xiong, Fan ;
Wang, Jianxin ;
Ke, Weimao ;
Li, Zhao .
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, :1697-1700
[24]   Next-generation characterization of the Cancer Cell Line Encyclopedia [J].
Ghandi, Mahmoud ;
Huang, Franklin W. ;
Jane-Valbuena, Judit ;
Kryukov, Gregory V. ;
Lo, Christopher C. ;
McDonald, E. Robert, III ;
Barretina, Jordi ;
Gelfand, Ellen T. ;
Bielski, Craig M. ;
Li, Haoxin ;
Hu, Kevin ;
Andreev-Drakhlin, Alexander Y. ;
Kim, Jaegil ;
Hess, Julian M. ;
Haas, Brian J. ;
Aguet, Francois ;
Weir, Barbara A. ;
Rothberg, Michael V. ;
Paolella, Brenton R. ;
Lawrence, Michael S. ;
Akbani, Rehan ;
Lu, Yiling ;
Tiv, Hong L. ;
Gokhale, Prafulla C. ;
De Weck, Antoine ;
Mansour, Ali Amin ;
Oh, Coyin ;
Shih, Juliann ;
Hadi, Kevin ;
Rosen, Yanay ;
Bistline, Jonathan ;
Venkatesan, Kavitha ;
Reddy, Anupama ;
Sonkin, Dmitriy ;
Liu, Manway ;
Lehar, Joseph ;
Korn, Joshua M. ;
Porter, Dale A. ;
Jones, Michael D. ;
Golji, Javad ;
Caponigro, Giordano ;
Taylor, Jordan E. ;
Dunning, Caitlin M. ;
Creech, Amanda L. ;
Warren, Allison C. ;
McFarland, James M. ;
Zamanighomi, Mahdi ;
Kauffmann, Audrey ;
Stransky, Nicolas ;
Imielinski, Marcin .
NATURE, 2019, 569 (7757) :503-+
[25]   Cobolt: integrative analysis of multimodal single-cell sequencing data [J].
Gong, Boying ;
Zhou, Yun ;
Purdom, Elizabeth .
GENOME BIOLOGY, 2021, 22 (01)
[26]   PharmGKB, an Integrated Resource of Pharmacogenomic Knowledge [J].
Gong, Li ;
Whirl-Carrillo, Michelle ;
Klein, Teri E. .
CURRENT PROTOCOLS, 2021, 1 (08)
[27]   CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer [J].
Griffith, Malachi ;
Spies, Nicholas C. ;
Krysiak, Kilannin ;
McMichael, Joshua F. ;
Coffman, Adam C. ;
Danos, Arpad M. ;
Ainscough, Benjamin J. ;
Ramirez, Cody A. ;
Rieke, Damian T. ;
Kujan, Lynzey ;
Barnell, Erica K. ;
Wagner, Alex H. ;
Skidmore, Zachary L. ;
Wollam, Amber ;
Liu, Connor J. ;
Jones, Martin R. ;
Bilski, Rachel L. ;
Lesurf, Robert ;
Feng, Yan-Yang ;
Shah, Nakul M. ;
Bonakdar, Melika ;
Trani, Lee ;
Matlock, Matthew ;
Ramu, Avinash ;
Campbell, Katie M. ;
Spies, Gregory C. ;
Graubert, Aaron P. ;
Gangavarapu, Karthik ;
Eldred, James M. ;
Larson, David E. ;
Walker, Jason R. ;
Good, Benjamin M. ;
Wu, Chunlei ;
Su, Andrew I. ;
Dienstmann, Rodrigo ;
Margolin, Adam A. ;
Tamborero, David ;
Lopez-Bigas, Nuria ;
Jones, Steven J. M. ;
Bose, Ron ;
Spencer, David H. ;
Wartman, Lukas D. ;
Wilson, Richard K. ;
Mardis, Elaine R. ;
Griffith, Obi L. .
NATURE GENETICS, 2017, 49 (02) :170-174
[28]  
Hamosh A, 2005, NUCLEIC ACIDS RES, V33, pD514
[29]   Reconstruction and Application of Protein-Protein Interaction Network [J].
Hao, Tong ;
Peng, Wei ;
Wang, Qian ;
Wang, Bin ;
Sun, Jinsheng .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (06)
[30]  
Hashim S, 2023, BIOCOMPUT-PAC SYM, P263