Pair Correlation Function of the Equilibrium Critical State of Fluids on a Mesoscopic Length Scale

被引:0
作者
Chaikina, Yu. A. [1 ]
Vetchinkin, A. S. [1 ]
Golubkov, M. G. [1 ]
Lundin, A. A. [1 ]
Rodionov, I. D. [1 ]
Shushin, A. I. [1 ]
Umanskii, S. Ya. [1 ]
机构
[1] Russian Acad Sci, Semenov Fed Res Ctr Chem Phys, Moscow, Russia
关键词
critical phenomena; pair correlation function; scale transformations; scale invariance; optical diagnostics of critical state of fluids; CRITICAL-POINT; DENSITY; PREDICTION; BEHAVIOR; MODEL;
D O I
10.1134/S1990793124701331
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
In this paper, the "fluctuation theorem" was solved for the first time in a direct way on the mesoscopic length scale. An analytical expression was obtained for the pair correlation function of the critical state of the fluid; the parameter of the function is the density variance, which is easily reconstructed from optical experiments. Comparison of the obtained result with the Ornstein-Zernike pair correlation function made it possible to determine the Fisher correction eta = 0.25, which increases the convergence. It was shown that the obtained results provide a reliable theoretical basis for optical diagnostics of the statistical state of critical fluids.
引用
收藏
页码:1795 / 1806
页数:12
相关论文
共 48 条
[1]  
Abdulagatov I. M., 2023, Sverhkrit. Flyuidy: Teor. Prakt., V18, P3, DOI [10.34984/SCFTP.2023.18.4.001, DOI 10.34984/SCFTP.2023.18.4.001]
[2]  
Anisimov M. A., 1949, JETP, V49, P844
[3]  
[Anonymous], 1964, HDB MATH FUNCTIONS F
[4]  
Bateman H, 1953, HIGHER TRANSCENDENTA
[5]  
Behnejad H., 2010, Appl-ied Thermodynamics of Fluids
[6]   Diagnostics of the Critical State of Carbon Dioxide [J].
Chaikina, Ju A. ;
Umanskii, S. Ya .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 15 (08) :1266-1272
[7]   Peculiarities of the small -angle scattering of laser radiation by critical CO 2 [J].
Chaikina, Ju A. ;
Umanskii, S. Ya .
CHEMICAL PHYSICS, 2020, 536
[8]  
Croxton C.A., 1974, Liquid State Physics - A Statistical Mechanics Introduction, DOI DOI 10.1017/CBO9780511753480
[9]  
Davydov A. S., 1940, Zh. Eksp. Teor. Fiz, V10, P263
[10]  
De Pasquale F., 1971, Field Theory Approach to Phase Transitions. Course LI