Strong Solutions to 3D Compressible Navier-Stokes Equations with Two-Directional Short Pulse Initial Data

被引:0
作者
Zhang, Tian-Tian [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
关键词
Well posedness; Navier-Stokes equations; Initial data; Energy estimates; GLOBAL WELL-POSEDNESS; WEAK SOLUTIONS; CLASSICAL-SOLUTIONS; EXISTENCE; VACUUM; SYSTEM; SPACES;
D O I
10.1007/s40840-025-01861-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Christodoulou first introduced Short pulse initial data to show the shock formation for compressible Euler equations and the formation of black holes for Einstein equations. Short pulse initial datum is the one chosen to be supported in the ball of radius delta and with amplitude delta( 1/ 2) which looks like a pulse. By introducing the change of variable, the short pulse type initial data become general initial data. Based on the new observations for the effective viscous flux and new decay estimates for the density via the Lagrangian coordinate, we prove the global well-posedness of solutions to the compressible Navier-Stokes equations with short pulse initial data in two directions which allow the density of the fluid to have large amplitude delta(- alpha/gamma) with delta is an element of (0, 1].
引用
收藏
页数:32
相关论文
共 40 条
[1]   ON THE REGULARITY FOR WEAK SOLUTIONS TO THE MICROPOLAR FLUID FLOWS [J].
Agarwal, R. P. ;
Alghamdi, A. M. ;
Gala, S. ;
Ragusa, M. A. .
APPLIED AND COMPUTATIONAL MATHEMATICS, 2024, 23 (04) :558-569
[2]  
Alghamdi A.M., 2023, Commun. Math., V31, P81
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[4]   A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical Lp Framework [J].
Charve, Frederic ;
Danchin, Raphael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :233-271
[5]   INHOMOGENEOUS INCOMPRESSIBLE VISCOUS FLOWS WITH SLOWLY VARYING INITIAL DATA [J].
Chemin, Jean-Yves ;
Zhang, Ping .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2018, 17 (05) :1121-1172
[6]  
Chen QL, 2010, COMMUN PUR APPL MATH, V63, P1173
[7]  
Christodoulou D, 2009, EMS TEXTB MATH, P1, DOI 10.4171/068
[8]  
Christodoulou D., 2014, Compressible Flow and Euler's Equations, V9
[9]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[10]  
Danchin R., 2016, Math. Ann., V64, P1