Enhancing 1.55 µm emission in InAs quantum dots on GaAs and InP substrates

被引:0
|
作者
Sara Sabri [1 ]
Rachid Malek [1 ]
Khalil Kassmi [2 ]
机构
[1] Mohammed First University,MEER/LETSER
[2] Mohammed First University,undefined
关键词
Effective mass approximation model; InAs layer thickness; InAs/GaAs; Emission wavelength; 1.55 ; m;
D O I
10.1007/s10751-025-02253-4
中图分类号
学科分类号
摘要
Controlling the emission wavelength of quantum dots (QDs) is a veritable assignment. Demand for excessive great semiconductor material working in the 1.55 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}m is substantially growing. The longest wavelength emission for InAs/GaAs QDs is 1.3 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}m. Extensive research at the InAs/GaAs QDs system have been performed to push InAs/GaAs QDs to operate at ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document} 1.55μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}m. In this paper, it turned into proven that a excessive compressive strain is the large drawback for the formation of top pleasant InAs/GaAs quantum dots emitting beyond 1.3 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}m. The lack of ability of the InAs/GaAs QDs system to reach the wavelength of 1.55 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}m results in the use of the InAs/InP QDs system. Very few experimental research have been completed on the InAs/InP Qds device compared to the InAs/GaAs Qds device. Therefore, theoretical researches can be useful in this case. This paper discusses the potential of InAs/InP QDs to emit inside the 1.55 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}m. It has been proven, the usage of the Effective Mass Approximation version, that emission wavelength at 1.55 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}m at room temperature can be executed through this QDs system. Tuning the emission wavelength of InAs/InP QDs to around 1.55 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}m, with higher precision, may be plausible with the aid of adjusting the size of QDs, way to the impact of quantum confinement which plays a fundamental function in enhancing the properties of QDs. Because the emission wavelength depend substantially on the thickness of InAs layers deposited, a careful control of the growth conditions is important to obtain an emission wavelength of 1.55 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}m by using InAs/InP QDs avoiding the additional amount of InAs added by As/P exchange.
引用
收藏
相关论文
共 50 条
  • [1] Interpretation and modeling of buried InAs quantum dots on GaAs and InP substrates
    McCaffrey, JP
    Robertson, MD
    Poole, PJ
    Riel, BJ
    Fafard, S
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (04) : 1784 - 1787
  • [2] Achievement of High Density InAs/GaInAsP Quantum Dots on Misoriented InP(001) Substrates Emitting at 1.55 μm
    Elias, Georges
    Letoublon, Antoine
    Piron, Rozenn
    Alghoraibi, Ibrahim
    Nakkar, Abdulhadi
    Chevalier, Nicolas
    Tavernier, Karine
    Le Corre, Alain
    Bertru, Nicolas
    Loualiche, Slimane
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (07)
  • [3] Achievement of vertically stacked InAs quantum dots on InP emitting at 1.55 μm
    INSA-Rennes, Rennes, France
    Conf Proc Int Conf Indium Phosphide and Relat Mater, (337-339):
  • [4] InAs/InP quantum dots emitting in the 1.55 μm wavelength region by inserting ultrathin GaAs and GaP interlayers
    Gong, Q
    Nötzel, R
    van Veldhoven, PJ
    Wolter, JH
    JOURNAL OF CRYSTAL GROWTH, 2005, 278 (1-4) : 67 - 71
  • [5] Low density 1.55 μm InAs/InGaAsP/InP (100) quantum dots enabled by an ultrathin GaAs interlayer
    van Veldhoven, P. J.
    Chauvin, N.
    Fiore, A.
    Notzel, R.
    APPLIED PHYSICS LETTERS, 2009, 95 (11)
  • [6] Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm
    Paranthoen, C
    Bertru, N
    Dehaese, O
    Le Corre, A
    Loualiche, S
    Lambert, B
    Patriarche, G
    APPLIED PHYSICS LETTERS, 2001, 78 (12) : 1751 - 1753
  • [7] The effect of rapid thermal annealing on 1.55 μm InAs/InP quantum dots
    Dear, Calum
    Park, Jae-Seong
    Jia, Hui
    El Hajraoui, Khalil
    Yuan, Jiajing
    Wang, Yangqian
    Hou, Yaonan
    Deng, Huiwen
    Li, Qiang
    Ramasse, Quentin M.
    Seeds, Alwyn
    Tang, Mingchu
    Liu, Huiyun
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (12)
  • [8] Optical spectroscopy of single InAs/InP quantum dots around λ=1.55 μm
    Chithrani, D
    Williams, RL
    Lefebvre, J
    Poole, PJ
    Aers, GC
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 21 (2-4): : 290 - 294
  • [9] Controlling shape of InAs1-xSbx quantum structures on InP for quantum dots with 1.55-μm emission
    Kawaguchi, Kenichi
    Ekawa, Mitsuru
    Akiyama, Tomoyuki
    Kuwatsuka, Haruhiko
    Sugawara, Mitsuru
    JOURNAL OF CRYSTAL GROWTH, 2007, 298 (SPEC. ISS) : 558 - 561
  • [10] 1.55 μm emission from InAs quantum dots grown on GaAs -: art. no. 151903
    Hsieh, TP
    Chiu, PC
    Chyi, JI
    Yeh, NT
    Ho, WJ
    Chang, WH
    Hsu, TM
    APPLIED PHYSICS LETTERS, 2005, 87 (15) : 1 - 3