Extracellular vesicles in sepsis plasma mediate neuronal inflammation in the brain through miRNAs and innate immune signaling

被引:4
作者
Park, Chanhee [1 ]
Lei, Zhuofan [1 ]
Li, Yun [1 ]
Ren, Boyang [1 ]
He, Junyun [1 ]
Huang, Huang [1 ]
Chen, Fengqian [1 ]
Li, Hui [1 ]
Brunner, Kavitha [1 ]
Zhu, Jing [1 ]
Jay, Steven M. [2 ]
Williams, Brittney [1 ]
Chao, Wei [1 ]
Wu, Junfang [1 ,3 ]
Zou, Lin [1 ]
机构
[1] Univ Maryland, Ctr Shock Trauma & Anesthesiol Res, Sch Med, Baltimore, MD 21201 USA
[2] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20740 USA
[3] Univ Maryland, Ctr Adv Chron Pain Res, Baltimore, MD 21201 USA
关键词
Sepsis; Sepsis-associated encephalopathy (SAE); Extracellular vesicles (EVs); Extracellular miRNA; Neuroinflammation; Microglia; Neuronal apoptosis; Myeloid differentiation primary response 88 (MyD88); Toll-like receptor 7 (TLR7); DYSFUNCTION; ACTIVATION; DEATH; EXPRESSION; MORTALITY; PATHOGENS; APOPTOSIS; MODEL; SHOCK; MICE;
D O I
10.1186/s12974-024-03250-0
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundNeuroinflammation reportedly plays a critical role in the pathogenesis of sepsis-associated encephalopathy (SAE). We previously reported that circulating plasma extracellular vesicles (EVs) from septic mice are proinflammatory. In the current study, we tested the role of sepsis plasma EVs in neuroinflammation.MethodsTo track EVs in cells and tissues, HEK293T cell-derived EVs were labeled with the fluorescent dye PKH26. Cecal ligation and puncture (CLP) was conducted to model polymicrobial sepsis in mice. Plasma EVs were isolated by ultracentrifugation and their role in promoting neuronal inflammation was tested following intracerebroventricular (ICV) injection. miRNA inhibitors (anti-miR-146a, -122, -34a, and -145a) were applied to determine the effects of EV cargo miRNAs in the brain. A cytokine array was performed to profile microglia-released protein mediators. TLR7- or MyD88-knockout (KO) mice were utilized to determine the underlying mechanism of EVs-mediated neuroinflammation.ResultsWe observed the uptake of fluorescent PKH26-EVs inside the cell bodies of both microglia and neurons. Sepsis plasma EVs led to a dose-dependent cytokine release in cultured microglia, which was partially attenuated by miRNA inhibitors against the target miRNAs and in TLR7-KO cells. When administered via the ICV, sepsis plasma EVs resulted in a marked increase in the accumulation of innate immune cells, including monocyte and neutrophil and cytokine gene expression, in the brain. Although sepsis plasma EVs had no direct effect on cytokine production or neuronal injury in vitro, the conditioned media (CM) of microglia treated with sepsis plasma EVs induced neuronal cell death as evidenced by increased caspase-3 cleavage and Annexin-V staining. Cytokine arrays and bioinformatics analysis of the microglial CM revealed multiple cytokines/chemokines and other factors functionally linked to leukocyte chemotaxis and migration, TLR signaling, and neuronal death. Moreover, sepsis plasma EV-induced brain inflammation in vivo was significantly dependent on MyD88.ConclusionsCirculating plasma EVs in septic mice cause a microglial proinflammatory response in vitro and a brain innate immune response in vivo, some of which are in part mediated by TLR7 in vitro and MyD88 signaling in vivo. These findings highlight the importance of circulating EVs in brain inflammation during sepsis.
引用
收藏
页数:18
相关论文
共 64 条
[1]   Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake [J].
Abels, Erik R. ;
Breakefield, Xandra O. .
CELLULAR AND MOLECULAR NEUROBIOLOGY, 2016, 36 (03) :301-312
[2]   Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles [J].
Balusu, Sriram ;
Van Wonterghem, Ellen ;
De Rycke, Riet ;
Raemdonck, Koen ;
Stremersch, Stephan ;
Gevaert, Kris ;
Brkic, Marjana ;
Demeestere, Delphine ;
Vanhooren, Valerie ;
Hendrix, An ;
Libert, Claude ;
Vandenbroucke, Roosmarijn E. .
EMBO MOLECULAR MEDICINE, 2016, 8 (10) :1162-1183
[3]   Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo [J].
Bhatnagar, Sanchita ;
Shinagawa, Kazuhiko ;
Castellino, Francis J. ;
Schorey, Jeff Rey S. .
BLOOD, 2007, 110 (09) :3234-3244
[4]   Elucidation of Exosome Migration Across the Blood-Brain Barrier Model In Vitro [J].
Chen, Claire C. ;
Liu, Linan ;
Ma, Fengxia ;
Wong, Chi W. ;
Guo, Xuning E. ;
Chacko, Jenu V. ;
Farhoodi, Henry P. ;
Zhang, Shirley X. ;
Zimak, Jan ;
Segaliny, Aude ;
Riazifar, Milad ;
Pham, Victor ;
Digman, Michelle A. ;
Pone, Egest J. ;
Zhao, Weian .
CELLULAR AND MOLECULAR BIOENGINEERING, 2016, 9 (04) :509-529
[5]   Hypochlorous acid derived from microglial myeloperoxidase could mediate high-mobility group box 1 release from neurons to amplify brain damage in cerebral ischemia-reperfusion injury [J].
Chen, Shuang ;
Pan, Jingrui ;
Gong, Zhe ;
Wu, Meiling ;
Zhang, Xiaoni ;
Chen, Hansen ;
Yang, Dan ;
Qi, Suhua ;
Peng, Ying ;
Shen, Jiangang .
JOURNAL OF NEUROINFLAMMATION, 2024, 21 (01)
[6]   Microglia mediate neurocognitive deficits by eliminating C1q-tagged synapses in sepsis-associated encephalopathy [J].
Chung, Ha-Yeun ;
Wickel, Jonathan ;
Hahn, Nina ;
Mein, Nils ;
Schwarzbrunn, Meike ;
Koch, Philipp ;
Ceanga, Mihai ;
Haselmann, Holger ;
Baade-Buettner, Carolin ;
von Stackelberg, Nikolai ;
Hempel, Nina ;
Schmidl, Lars ;
Groth, Marco ;
Andreas, Nico ;
Goetze, Juliane ;
Coldewey, Sina M. ;
Bauer, Michael ;
Mawrin, Christian ;
Dargvainiene, Justina ;
Leypoldt, Frank ;
Steinke, Stephan ;
Wang, Zhao-Qi ;
Hust, Michael ;
Geis, Christian .
SCIENCE ADVANCES, 2023, 9 (21)
[7]   Role of Interleukin-1β in Postoperative Cognitive Dysfunction [J].
Cibelli, Mario ;
Fidalgo, Antonio Rei ;
Terrando, Niccolo ;
Ma, Daqing ;
Monaco, Claudia ;
Feldmann, Marc ;
Takata, Masao ;
Lever, Isobel J. ;
Nanchahal, Jagdeep ;
Fanselow, Michael S. ;
Maze, Mervyn .
ANNALS OF NEUROLOGY, 2010, 68 (03) :360-368
[8]   Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions [J].
Dickens, Alex M. ;
Tovar-y-Romo, Luis B. ;
Yoo, Seung-Wan ;
Trout, Amanda L. ;
Bae, Mihyun ;
Kanmogne, Marlene ;
Megra, Bezawit ;
Williams, Dionna W. ;
Witwer, Kennith W. ;
Gacias, Mar ;
Tabatadze, Nino ;
Cole, Robert N. ;
Casaccia, Patrizia ;
Berman, Joan W. ;
Anthony, Daniel C. ;
Haughey, Norman J. .
SCIENCE SIGNALING, 2017, 10 (473)
[9]   Neuroinflammation: the devil is in the details [J].
DiSabato, Damon J. ;
Quan, Ning ;
Godbout, Jonathan P. .
JOURNAL OF NEUROCHEMISTRY, 2016, 139 :136-153
[10]   PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles [J].
Dominkus, Pia Puzar ;
Stenovec, Matjaz ;
Sitar, Simona ;
Lasic, Eva ;
Zorec, Robert ;
Plemenitas, Ana ;
Zagar, Ema ;
Kreft, Marko ;
Lenassi, Metka .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2018, 1860 (06) :1350-1361