Strong convergence of Bregman projection algorithms for solving split feasibility problems

被引:0
作者
Liu, Liya [1 ]
Li, Songxiao [2 ]
Tan, Bing [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Shantou Univ, Dept Math, Shantou 515063, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2025年 / 140卷
基金
中国国家自然科学基金;
关键词
Split feasibility problem; Bregman projection; CQ algorithm; Strong convergence; Armijo-line search;
D O I
10.1016/j.cnsns.2024.108374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bregman distance methods play a key role in solving problems in nonlinear analysis and optimization theory, since the Bregman distance is a useful substitute for the metric. The main purpose of this paper is to investigate two new iterative algorithms based on the Bregman distance and the Bregman projection for solving split feasibility problems in real Hilbert spaces. The algorithms are constructed around these methods: Byrne's CQ method, Polyak's gradient method, Halpern method, and hybrid projection method. The proposed methods involve inertial extrapolation terms and self-adaptive step sizes. We prove that the proposed iterations converge strongly to the Bregman projection of the initial point onto the solution set. Some numerical examples are provided to illustrate the computational effectiveness of our algorithms. The main results extend and improve the recent results related to the split feasibility problem.
引用
收藏
页数:18
相关论文
共 39 条
[1]   A new self-adaptive CQ algorithm with an application to the LASSO problem [J].
Anh, Pham Ky ;
Vinh, Nguyen The ;
Dung, Vu Tien .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (04)
[2]  
[Anonymous], 1969, USSR Computational Mathematics and Mathematical Physics, DOI [10.1016/0041-5553(69)90061-5, DOI 10.1016/0041-5553(69)90061-5]
[3]   Bregman distances and Chebyshev sets [J].
Bauschke, Heinz H. ;
Wang, Xianfu ;
Ye, Jane ;
Yuan, Xiaoming .
JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) :3-25
[4]  
Bauschke HH., 1997, J. Convex Anal, V4, P27
[5]  
Bregman L., 1967, USSR Comput. Math. Math. Phys., V7, P200, DOI [10.1016/0041-5553(67) 90040-7, DOI 10.1016/0041-5553(67)90040-7]
[6]   Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces [J].
Butnariu, Dan ;
Resmerita, Elena .
ABSTRACT AND APPLIED ANALYSIS, 2006,
[8]   Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem [J].
Ceng, L. -C. ;
Ansari, Q. H. ;
Yao, J. -C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2116-2125
[9]   An interior point method with Bregman functions for the variational inequality problem with paramonotone operators [J].
Censor, Y ;
Iusem, AN ;
Zenios, SA .
MATHEMATICAL PROGRAMMING, 1998, 81 (03) :373-400
[10]  
Censor Y., 1994, Numer. Algorithms, V8, P221, DOI [DOI 10.1007/BF02142692, 10.1007/BF02142692]