Complexity of linearized quadratic penalty for optimization with nonlinear equality constraints

被引:1
作者
El Bourkhissi, Lahcen [1 ]
Necoara, Ion [1 ,2 ]
机构
[1] Natl Univ Sci & Technol Politehn Bucharest, Dept Automat Control & Syst Engn, Bucharest 060042, Romania
[2] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl M, Bucharest 050711, Romania
关键词
Nonconvex optimization; Nonlinear functional constraints; Linearized quadratic penalty; Convergence analysis; PROXIMAL ALGORITHMS; MODELS;
D O I
10.1007/s10898-024-01456-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we consider a nonconvex optimization problem with nonlinear equality constraints. We assume that both, the objective function and the functional constraints, are locally smooth. For solving this problem, we propose a linearized quadratic penalty method, i.e., we linearize the objective function and the functional constraints in the penalty formulation at the current iterate and add a quadratic regularization, thus yielding a subproblem that is easy to solve, and whose solution is the next iterate. Under a new adaptive regularization parameter choice, we provide convergence guarantees for the iterates of this method to an & varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} first-order optimal solution in O(& varepsilon;-2.5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}({\epsilon <^>{-2.5}})$$\end{document} iterations. Finally, we show that when the problem data satisfy Kurdyka-Lojasiewicz property, e.g., are semialgebraic, the whole sequence generated by the proposed algorithm converges and we derive improved local convergence rates depending on the KL parameter. We validate the theory and the performance of the proposed algorithm by numerically comparing it with some existing methods from the literature.
引用
收藏
页码:483 / 510
页数:28
相关论文
共 36 条
[1]  
[Anonymous], 2008, Introduction to Probability
[2]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[3]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[4]   Complexity and performance of an Augmented Lagrangian algorithm [J].
Birgin, E. G. ;
Martinez, J. M. .
OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (05) :885-920
[5]   EVALUATION COMPLEXITY FOR NONLINEAR CONSTRAINED OPTIMIZATION USING UNSCALED KKT CONDITIONS AND HIGH-ORDER MODELS [J].
Birgin, E. G. ;
Gardenghi, J. L. ;
Martinez, J. M. ;
Santos, S. A. ;
Toint, Ph. L. .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) :951-967
[6]   Massive MIMO Systems With Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits [J].
Bjornson, Emil ;
Hoydis, Jakob ;
Kountouris, Marios ;
Debbah, Merouane .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) :7112-7139
[7]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[8]   ON THE COMPLEXITY OF AN INEXACT RESTORATION METHOD FOR CONSTRAINED OPTIMIZATION [J].
Bueno, Luis Felipe ;
Martinez, Jose Mario .
SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) :80-101
[9]   ON THE EVALUATION COMPLEXITY OF COMPOSITE FUNCTION MINIMIZATION WITH APPLICATIONS TO NONCONVEX NONLINEAR PROGRAMMING [J].
Cartis, Coralia ;
Gould, Nicholas I. M. ;
Toint, Philippe L. .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) :1721-1739
[10]   A Dynamic Alternating Direction of Multipliers for Nonconvex Minimization with Nonlinear Functional Equality Constraints [J].
Cohen, Eyal ;
Hallak, Nadav ;
Teboulle, Marc .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) :324-353