Coatings on a First Wall Plasma-Facing Surface: Analysis and High Heat Flux Testing on the Tsefey-M E-Beam Facility

被引:0
作者
Piskarev, P. Yu. [1 ]
Rulev, R. V. [1 ]
Mazul, I. V. [1 ]
Krasilnikov, A. V. [2 ]
Pisarev, A. A. [3 ]
Kuteev, B. V. [4 ]
Kolesnik, M. S. [1 ]
Dushik, V. V. [5 ]
Bobrov, S. V. [1 ]
Montak, N. V. [1 ]
Rybikov, A. A. [1 ]
Bukatin, T. N. [5 ]
机构
[1] Efremov Inst, JSC NIIEFA, St Petersburg, Russia
[2] Inst Project ?tr ITER, Moscow, Russia
[3] Natl Res Nucl Univ MEPhI, Moscow, Russia
[4] Kurchatov Inst, Natl Res Ctr, Moscow, Russia
[5] Frumkin Inst Phys Chem & Electrochem, Moscow, Russia
关键词
first wall; plasma-facing material; boron carbide; tungsten; protective SS coating; atmospheric plasma spraying; chemical vapor deposition; hot isostatic pressing; thermal cycling test;
D O I
10.1134/S1063778824130076
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Some aspects of the use of coatings for various functional purposes on the first wall plasma-facing surface of a thermonuclear reactor are considered. An important characteristic of coatings is adhesive and fatigue strength under cyclic impact of quasi-stationary heat loads, as well as resistance to high pulsed thermal loads. This paper describes thermal cyclic tests with surface thermal load of water-cooled mockups with various coatings on the heat-receiving surface. The B4C coating, made by atmospheric plasma spraying on a tungsten substrate, demonstrated excellent durability over 1400 thermal cycles at 4.7 MW/m(2). CVD tungsten coating on a copper substrate demonstrated good results after 1000 thermal cycles at 3.3 MW/m(2), but after a similar number of cycles at 5 MW/m(2), cracks were detected on the surface. The stainless steel coating on a copper substrate demonstrated resistance to loads up to 11.9 MW/m(2), as well as excellent durability over 1000 thermal cycles at 8.2 MW/m(2).
引用
收藏
页码:S118 / S128
页数:11
相关论文
共 12 条
[1]  
Piskarev P.Y., Mazul I.V., Makhankov A.N., Kolesnik M.S., Okuneva E.V., Litunovsky N.V., Phys. At. Nucl, 87, 13, (2024)
[2]  
Gervash A., Giniyatulin R., Guryeva T., Glazunov D., Kuznetsov V., Mazul I., Ogursky P., Piskarev, V. Safronov, R. Eaton, R. Raffray, and O. Sevryukov, Fusion Eng. Des, 146, (2019)
[3]  
Giniyatulin R.N., Mazul I.V., Gervash A.A., Guryeva T.M., Kuznetcov V.E., Makhankov A.N., Okunev A.A., Sevrukov O.N., Fusion Eng. Des, 136, (2018)
[4]  
Beryllium cladding of ITER reactor is planned to be replaced by tungsten cladding, (2023)
[5]  
Badger B., Et al., Wisconsin Toroidal Fusion Reactor Design Study. UWMAK-1, UWFDM, (1974)
[6]  
Badger B., Et al., Conceptual Tokamak Reactor Design. UWMAK-II, UWFDM-112, (1975)
[7]  
Mikhailov V.N., Evtikhin V.A., Lyublinskii I.E., Vertkov A.V., Chumanov A.N., Lithium in Thermonuclear and Space Energy of the 21st Century, (1999)
[8]  
Cherepanov D.E., Burdakov A.V., Vyacheslavov L.N., Kandaurov I.V., Kasatov A.A., Kazantsev S.R., Krasilnikov A.V., Popov V.A., Ryzhkov G.A., Shoshin A.A., Phys. At. Nucl, 87, 13, (2024)
[9]  
Krasovskii A.I., Chuzhko R.K., Balakhovskii O.A., Tregulov V.R., Tungsten Fluoride Process. Physical and Chemical Basis. Metal Properties, (1981)
[10]  
Piskarev P.Y., Mazul I.V., Zakharov L.E., Tarasyuk G.M., Kolesnik M.S., Rulev R.V., Ogursky A.Y., Gervash A.A., Ruzanov V., Gasparyan Y.M., Pisarev A.A., Fusion Eng. Des, 184, (2022)