The powers of Euler's product and congruences for certain partition functions

被引:0
作者
Xia, Ernest X. W. [1 ]
Xin, Liu Jin [2 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Jiangsu, Peoples R China
[2] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Generating functions; Congruences; Partitions; Modular equations; Mock theta functions; GENERALIZED FROBENIUS PARTITIONS; SIMPLE PROOF; ANDREWS;
D O I
10.1007/s11139-025-01052-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let ak(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_k(n)$$\end{document} be defined by & sum;n=0 infinity ak(n)qn=E(q)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n=0}<^>\infty a_k(n)q<^>n=E(q)<^>k$$\end{document}, where E(q)=& prod;n=1 infinity(1-qn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(q)=\prod _{n=1}<^>\infty (1-q<^>n) $$\end{document} is Euler's product. In this paper, by means of the modular equations of fifth, seventh and thirteenth order, we give a general method to establish the generating functions for ak(p2 alpha+1n+k(p2 alpha+2-1)24-p2 alpha+1t(p,k))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_k(p<^>{2\alpha +1}n+\frac{k(p<^>{2\alpha +2}-1)}{24}-p<^>{2\alpha +1}t(p,k))$$\end{document}, where 1 <= k <= 24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k \le 24$$\end{document}, p is an element of{5,7,13}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in \{5,7,13\}$$\end{document} and t(5,k)=k5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t(5,k)=\left[ \frac{k}{5}\right] $$\end{document}, t(7,k)=2k7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t(7,k)=\left[ \frac{2k}{7}\right] $$\end{document} and t(13,k)=7k13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t(13,k)=\left[ \frac{7k}{13}\right] $$\end{document}. These generating functions are determined by some sequences which satisfy the same three-term linear recurrence relations. Based on those generating functions, we present a sufficient condition to find infinite families of congruences for certain kinds of partition functions. As applications of the sufficient condition, we obtain many new infinite families of congruences for certain partition functions, such as, partition functions related to mock theta functions and generalized Frobenius partition functions. In particular, we deduce some strange congruences for those partition functions.
引用
收藏
页数:34
相关论文
共 27 条
  • [1] Andrews G.E., 2010, The Theory of Partitions
  • [2] Andrews G.E., 1984, memoirs of the American Mathematical Society, V301
  • [3] Andrews GE., 2017, Congruences related to the Ramanujan/Watson mock theta functions and Ramanujan J, V43, P347
  • [4] Partitions associated with the Ramanujan/Watson mock theta functions ω(q), ν(q)and ϕ(q)
    Andrews G.E.
    Dixit A.
    Yee A.J.
    [J]. Research in Number Theory, 1 (1)
  • [5] Congruences for generalized Frobenius partitions with 4 colors
    Baruah, Nayandeep Deka
    Sarmah, Bipul Kumar
    [J]. DISCRETE MATHEMATICS, 2011, 311 (17) : 1892 - 1902
  • [6] Berndt B., 1991, Ramanujans Notebooks-Part III
  • [7] Congruence properties for a certain kind of partition functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Huang, Anthony X.
    [J]. ADVANCES IN MATHEMATICS, 2016, 290 : 739 - 772
  • [8] Fine N.J, 1988, Basic Hypergeometric Series and Applications
  • [9] A SIMPLE PROOF OF WATSON PARTITION CONGRUENCES FOR POWERS OF 7
    GARVAN, FG
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1984, 36 (JUN): : 316 - 334
  • [10] Congruences modulo powers of 3 for generalized Frobenius partitions with six colors
    Gu, Chao
    Wang, Liuquan
    Xia, Ernest X. W.
    [J]. ACTA ARITHMETICA, 2016, 175 (03) : 291 - 300