Optoelectronic array of photodiodes integrated with RRAMs for energy-efficient in-sensor computing

被引:0
|
作者
Pan, Wen [1 ]
Wang, Lai [1 ,2 ]
Tang, Jianshi [2 ,3 ]
Huang, Heyi [3 ]
Hao, Zhibiao [1 ,2 ]
Sun, Changzheng [1 ,2 ]
Xiong, Bing [1 ,2 ]
Wang, Jian [1 ,2 ]
Han, Yanjun [1 ,2 ]
Li, Hongtao [1 ,2 ]
Gan, Lin [1 ,2 ]
Luo, Yi [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRist, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Integrated Circuits, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
VISION; PROCESSOR; MEMORY;
D O I
10.1038/s41377-025-01743-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The rapid development of internet of things (IoT) urgently needs edge miniaturized computing devices with high efficiency and low-power consumption. In-sensor computing has emerged as a promising technology to enable in-situ data processing within the sensor array. Here, we report an optoelectronic array for in-sensor computing by integrating photodiodes (PDs) with resistive random-access memories (RRAMs). The PD-RRAM unit cell exhibits reconfigurable optoelectronic output and photo-responsivity by programming RRAMs into different resistance states. Furthermore, a 3 x 3 PD-RRAM array is fabricated to demonstrate optical image recognition, achieving a universal architecture with ultralow latency and low power consumption. This study highlights the great potential of the PD-RRAM optoelectronic array as an energy-efficient in-sensor computing primitive for future IoT applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Dual-Mode ZnO/SnSe Heterojunction Devices with Integrated Bipolar Response Photodetectors and Artificial Optoelectronic Synapses for in-Sensor Computing
    Guo, Fuhai
    Yu, Weizhuo
    Zhang, Mingcong
    Zhang, Bo
    Hu, Bing
    Li, Shuangshuang
    Jiang, Jianyu
    Sun, Ankai
    Liu, Yunjie
    Hao, Lanzhong
    SMALL METHODS, 2025,
  • [42] An Energy-Efficient Solid-State Organic Device Array for Neuromorphic Computing
    Hu, Lan Shen
    Fattori, Marco
    Schilp, Winston
    Verbeek, Roy
    Kazemzadeh, Setareh
    van de Burgt, Yoeri
    Kronemeijer, Auke Jisk
    Gelinck, Gerwin
    Cantatore, Eugenio
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (12) : 6520 - 6525
  • [43] An Integrated Energy-Efficient Wireless Sensor Node for the Microtremor Survey Method
    Tian, Ruyun
    Wang, Longxu
    Zhou, Xiaohua
    Xu, Hao
    Lin, Jun
    Zhang, Linhang
    SENSORS, 2019, 19 (03):
  • [44] An Energy-Efficient Integrated MAC and Routing Protocol for Wireless Sensor Networks
    Wang, Xinguo
    Zhang, Xinming
    Zhang, Qian
    Chen, Guoliang
    2009 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-8, 2009, : 96 - +
  • [45] Survey of Energy-Efficient Techniques for the Cloud-Integrated Sensor Network
    Das, Kalyan
    Das, Satyabrata
    Darji, Rabi Kumar
    Mishra, Ananya
    JOURNAL OF SENSORS, 2018, 2018
  • [46] Energy-efficient hierarchical routing in wireless sensor networks based on fog computing
    Abidoye, Ademola Philip
    Kabaso, Boniface
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2021, 2021 (01)
  • [47] Energy-efficient hierarchical routing in wireless sensor networks based on fog computing
    Ademola Philip Abidoye
    Boniface Kabaso
    EURASIP Journal on Wireless Communications and Networking, 2021
  • [48] Backpropagation for Energy-Efficient Neuromorphic Computing
    Esser, Steve K.
    Appuswamy, Rathinakumar
    Merolla, Paul A.
    Arthur, John V.
    Modha, Dharmendra S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [49] Energy-Efficient Computing in Nanoscale CMOS
    De, Vivek
    IEEE DESIGN & TEST, 2016, 33 (02) : 68 - 75
  • [50] Energy-efficient computing with approximate multipliers
    Pilipović, Ratko
    Bulić, Patricio
    Lotrič, Uroš
    Elektrotehniski Vestnik/Electrotechnical Review, 2022, 89 (03): : 117 - 123