In this article, we propose an Alternating Direction Implicit (ADI) type operator splitting weak Galerkin finite element method (WG-FEM) for solving a parabolic singularly perturbed problem with two-parameters in 2D over a layer-adapted mesh. The suggested operator splitting approach divides the original model problem into two subproblems each in 1D, then solving each subproblem using WG-FEM in spatial direction eventually reduces the computational difficulty and high storage requirements. Backward-Euler time discretization has been taken over a uniform mesh. Stability and convergence results have been proved for the fully-discrete scheme. Numerical examples are presented corroborating in practice our theoretical findings.
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
Univ Al Qadisiyah, Dept Math, Al Diwaniyah, IraqUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Al-Taweel, Ahmed
Hussain, Saqib
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Hussain, Saqib
Wang, Xiaoshen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
Univ Al Qadisiyah, Dept Math, Al Diwaniyah, IraqUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Al-Taweel, Ahmed
Hussain, Saqib
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Hussain, Saqib
Wang, Xiaoshen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA