An Improvised Cubic B-spline Collocation of Fourth Order and Crank-Nicolson Technique for Numerical Soliton of Klein-Gordon and Sine-Gordon Equations

被引:1
作者
Jena, Saumya Ranjan [1 ]
Senapati, Archana [1 ]
机构
[1] KIIT Deemed Be Univ, Sch Appl Sci, Dept Math, Bhubaneswar 751024, Odisha, India
关键词
Redefined cubic B-spline; Crank-Nicolson; Finite element method; Stability analysis; Error analysis; Convergence analysis; DISCONTINUOUS GALERKIN METHOD; SCHEME;
D O I
10.1007/s40995-024-01727-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article examines the nonlinear hyperbolic Klein-Gordon equation (KGE) and sine-Gordon equation (SGE) with Crank-Nicolson and the finite element method (FEM) based on an improvised quartic order cubic B-spline collocation approach and explores their novel numerical solutions along with computational complexity. This work explains the parameters such as Euclidean error norms L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{2}$$\end{document}, maximum absolute error L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{\infty }$$\end{document}, and root-mean-square (RMS) error with computational time cost, experimental order of convergence (EOC), and three conservative laws I1,I2,I3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}_{1},{I}_{2},{I}_{3}$$\end{document} of mass momentum and energy conservation, respectively. It is demonstrated that the method is unconditionally stable with the von-Neumann process and accurate to convergence of order O (h4+Delta t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h}<^>{4}+\Delta t)$$\end{document}. Finally, four test examples are investigated to support our assertion, and the experimental findings are compared to existing approaches using software tools like MATLAB and MATHEMATICA. 2D and 3D graphical representations of solutions are also presented and compared with the exact solution and results of others.
引用
收藏
页码:383 / 407
页数:25
相关论文
共 41 条
[1]   Numerical Solutions of Korteweg-de Vries and Korteweg-de Vries-Burger's Equations in a Bernstein Polynomial Basis [J].
Ahmed, H. M. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (04)
[2]  
Akgl A., 2016, Adv Differ Equ, V1, P1
[3]   Numerical Treatment of Time-Fractional Klein-Gordon Equation Using Redefined Extended Cubic B-Spline Functions [J].
Amin, Muhammad ;
Abbas, Muhammad ;
Iqbal, Muhammad Kashif ;
Baleanu, Dumitru .
FRONTIERS IN PHYSICS, 2020, 8
[4]   Applications of Quintic Hermite collocation with time discretization to singularly perturbed problems [J].
Arora, Shelly ;
Kaur, Inderpreet .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 316 :409-421
[5]  
Baccouch M, 2019, INT J NUMER ANAL MOD, V16, P436
[6]   Optimal energy-conserving local discontinuous Galerkin method for the one-dimensional sine-Gordon equation [J].
Baccouch, Mahboub .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (02) :316-344
[7]   A fourth order numerical scheme for the one-dimensional sine-Gordon equation [J].
Bratsos, A. G. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (07) :1083-1095
[8]   The stability spectrum for elliptic solutions to the sine-Gordon equation [J].
Deconinck, Bernard ;
McGill, Peter ;
Segal, Benjamin L. .
PHYSICA D-NONLINEAR PHENOMENA, 2017, 360 :17-35
[9]   Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions [J].
Dehghan, Mehdi ;
Shokri, Ali .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) :400-410
[10]  
Gebremedhin GS, 2020, INT J COMPUT SCI MAT, V11, P253