Review of damage detection techniques in vibration-based structural health monitoring

被引:0
|
作者
Ren, Yifan [1 ]
Bareille, Olivier [2 ]
Lin, Zeyu [3 ]
Huang, Xing-Rong [1 ]
机构
[1] Beihang Univ, Ecole Cent Pekin, Sino French Carbon Neutral Res Ctr, Sch Gen Engn, Beijing 100191, Peoples R China
[2] Univ Rouen Normandie, Lab Mech Normandy LMN, INSA Rouen Normandie, Rouen, France
[3] Zhixin High Sch, Guangzhou 510000, Peoples R China
基金
中国国家自然科学基金;
关键词
Damage detection method; Structural health monitoring; Vibration-based detection; Electromechanical impedance method; Acoustic emission testing; Ultrasonic guided wave; Lamb wave; EMPIRICAL MODE DECOMPOSITION; GREENS-FUNCTION; AMBIENT NOISE; IMPULSE-RESPONSE; IMPACT DAMAGE; LOCALIZATION; WAVES; FREQUENCY;
D O I
10.1007/s40435-024-01578-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Structural health monitoring (SHM) is essential for evaluating and ensuring the safety and reliability of structures by measuring their operating environment and responses. SHM encompasses different levels of analysis, including damage detection, localization, severity assessment, and remaining operational life estimation. Effective damage detection systems enhance performance and safety. Advanced SHM systems in aerospace engineering and civil engineering demonstrate significant maintenance cost reductions. Current inspection techniques include visual observations, ultrasonics, and modal analysis, utilizing sensors like optical fiber sensors and MEMS. SHM faces challenges such as meeting airborne requirements, developing large sensor networks, and mitigating environmental impacts on detection signals. This review provides a comprehensive overview of vibration-based damage detection methods, focusing on their physical mechanisms, commonly used indicators, and applications of active and passive monitoring methods. Each method has unique advantages and limitations, contributing to a holistic approach to SHM. The review concludes by highlighting future perspectives on vibration-based SHM techniques, emphasizing the need for advancements in sensor technology, signal processing, and integration of multiple monitoring approaches for enhanced accuracy and reliability.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Vibration-based structural damage identification
    Farrar, CR
    Doebling, SW
    Nix, DA
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1778): : 131 - 149
  • [22] Vibration-based Structural Health Monitoring of Harbor Caisson Structure
    Lee, So-Young
    Lee, So-Ra
    Kim, Jeong-Tae
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2011, 2011, 7981
  • [23] Vibration-Based Support Vector Machine for Structural Health Monitoring
    Pan, Hong
    Azimi, Mohsen
    Gui, Guoqing
    Yan, Fei
    Lin, Zhibin
    EXPERIMENTAL VIBRATION ANALYSIS FOR CIVIL STRUCTURES: TESTING, SENSING, MONITORING, AND CONTROL, 2018, 5 : 167 - 178
  • [24] Fuzzy Pattern Recognition in Vibration-Based Structural Health Monitoring
    Azarbayejani, Mohammad
    EXPERIMENTAL VIBRATION ANALYSIS FOR CIVIL STRUCTURES: TESTING, SENSING, MONITORING, AND CONTROL, 2018, 5 : 283 - 292
  • [25] Improvement of a vibration-based damage detection approach for health monitoring of bolted flange joints in pipelines
    Razi, Pejman
    Esmaeel, Ramadan A.
    Taheri, Farid
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2013, 12 (03): : 207 - 224
  • [26] VIBRATION-BASED STRUCTURAL DAMAGE DETECTION UNDER VARYING TEMPERATURE CONDITIONS
    Zhou, Xiao-Qing
    Huang, Wen
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2013, 13 (05)
  • [27] A Hybrid Method for Vibration-Based Bridge Damage Detection
    Gonen, Semih
    Erduran, Emrah
    REMOTE SENSING, 2022, 14 (23)
  • [28] Vibration-based detection of structural damage in a railway bridge - a comparative study
    Ahmad, Sofyan
    Zabel, Volkmar
    Brehm, Maik
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 1281 - 1288
  • [29] Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures
    Amezquita-Sanchez, Juan Pablo
    Adeli, Hojjat
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2016, 23 (01) : 1 - 15
  • [30] A new open-database benchmark structure for vibration-based Structural Health Monitoring
    Wernitz, Stefan
    Hofmeister, Benedikt
    Jonscher, Clemens
    Griessmann, Tanja
    Rolfes, Raimund
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (11)