Exploring the correlation between DNA methylation and biological age using an interpretable machine learning framework

被引:0
|
作者
Zhou, Sheng [1 ]
Chen, Jing [2 ]
Wei, Shanshan [1 ]
Zhou, Chengxing [3 ]
Wang, Die [4 ]
Yan, Xiaofan [5 ]
He, Xun [5 ]
Yan, Pengcheng [6 ]
机构
[1] Guizhou Med Univ, Dept Publ Hlth & Hlth, Guiyang, Guizhou, Peoples R China
[2] Guizhou Prov Drug Adm Inspect Ctr, Guiyang, Guizhou, Peoples R China
[3] Guizhou Med Univ, Sch Biology&Engineering, Sch Hlth Med Modern Ind, Guiyang, Guizhou, Peoples R China
[4] Guizhou Med Univ, Coll Anesthesia, Guiyang, Guizhou, Peoples R China
[5] Guizhou Med Univ, Sch Med & Hlth Management, Guiyang, Guizhou, Peoples R China
[6] Guizhou Med Univ, Sch Clin Med, Guiyang, Guizhou, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
DNA methylation; Biological age; GO enrichment analysis; XGBoost; Interpretable machine learning; Shapley Additive exPlanations;
D O I
10.1038/s41598-024-75586-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA methylation plays a significant role in regulating transcription and exhibits a systematic change with age. These changes can be used to predict an individual's age. First, to identify methylation sites associated with biological age; second, to construct a biological age prediction model and preliminarily explore the biological significance of methylation-associated genes using machine learning. A biological age prediction model was constructed using human methylation data through data preprocessing, feature selection procedures, statistical analysis, and machine learning techniques. Subsequently, 15 methylation data sets were subjected to in-depth analysis using SHAP, GO enrichment, and KEGG analysis. XGBoost, LightGBM, and CatBoost identified 15 groups of methylation sites associated with biological age. The cg23995914 locus was identified as the most significant contributor to predicting biological age by calculating SHAP values. Furthermore, GO enrichment and KEGG analyses were employed to initially explore the methylated loci's biological significance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Reproduction, DNA methylation and biological age
    Kresovich, Acob K.
    Harmon, Quaker E.
    Xu, Zongli
    Nichols, Hazel B.
    Sandler, Dale R.
    Taylor, Jack A.
    HUMAN REPRODUCTION, 2019, 34 (10) : 1965 - 1973
  • [2] Exploring legal age estimation using DNA methylation
    Boullon-Cassau, M.
    Ambroa-Conde, A.
    de Cal, M. A. Casares
    Gomez-Tato, A.
    Mosquera-Miguel, A.
    Ruiz-Ramirez, J.
    Cabrejas-Olalla, A.
    Gonzalez-Bao, J.
    Casanova-Adan, L.
    de la Puente, M.
    Rodriguez, A.
    Phillips, C.
    Lareu, M. V.
    Freire-Aradas, A.
    FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2025, 74
  • [3] The explanation game: a formal framework for interpretable machine learning
    Watson, David S.
    Floridi, Luciano
    SYNTHESE, 2021, 198 (10) : 9211 - 9242
  • [4] R.ROSETTA: an interpretable machine learning framework
    Mateusz Garbulowski
    Klev Diamanti
    Karolina Smolińska
    Nicholas Baltzer
    Patricia Stoll
    Susanne Bornelöv
    Aleksander Øhrn
    Lars Feuk
    Jan Komorowski
    BMC Bioinformatics, 22
  • [5] The explanation game: a formal framework for interpretable machine learning
    David S. Watson
    Luciano Floridi
    Synthese, 2021, 198 : 9211 - 9242
  • [6] R.ROSETTA: an interpretable machine learning framework
    Garbulowski, Mateusz
    Diamanti, Klev
    Smolinska, Karolina
    Baltzer, Nicholas
    Stoll, Patricia
    Bornelov, Susanne
    Ohrn, Aleksander
    Feuk, Lars
    Komorowski, Jan
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [7] Prediction of wave runup on beaches using interpretable machine learning
    Kim, Taeyoon
    Lee, Woo-Dong
    OCEAN ENGINEERING, 2024, 297
  • [8] Toward Design and Evaluation Framework for Interpretable Machine Learning Systems
    Mohseni, Sina
    AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2019, : 553 - 554
  • [9] The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age
    Sangkyu Kim
    Leann Myers
    Jennifer Wyckoff
    Katie E. Cherry
    S. Michal Jazwinski
    GeroScience, 2017, 39 : 83 - 92
  • [10] The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age
    Kim, Sangkyu
    Myers, Leann
    Wyckoff, Jennifer
    Cherry, Katie E.
    Jazwinski, S. Michal
    GEROSCIENCE, 2017, 39 (01) : 83 - 92