Ranks and Approximations for Families of Ordered Theories

被引:2
作者
Kulpeshov, B. Sh. [1 ,2 ]
Pavlyuk, In. I. [3 ]
Sudoplatov, S. V. [3 ,4 ]
机构
[1] Kazakh British Tech Univ, Alma Ata 050000, Kazakhstan
[2] Inst Math & Math Modeling, Alma Ata 050010, Kazakhstan
[3] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia
[4] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
关键词
rank; approximation; family of theories; ordered theory; O-MINIMAL STRUCTURES; DEFINABLE FAMILIES; ALGEBRAS; FORMULAS;
D O I
10.1134/S0001434624090256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rank values for various families of ordered theories are described as depending on the languages under consideration; a description of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{e}$$\end{document}-total transcendence in terms of these languages is also given. Approximations of ordered theories are studied, including approximations by finite and countably categorical orders. Closures are studied and ranks are described for families of ordered theories, including the families of o-minimal and weakly o-minimal theories of various signatures, as well as theories of pure linear orders with various constraints on the discrete parts.
引用
收藏
页码:669 / 684
页数:16
相关论文
共 27 条
[1]  
CHERLIN G, 2003, FINITE STRUCTURES FE, V152
[2]   ELIMINATION OF QUANTIFIERS FOR ORDERED VALUATION RINGS [J].
DICKMANN, MA .
JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (01) :116-128
[3]   Algebras of Distributions of Binary Isolating Formulas for Quite o-Minimal Theories [J].
Emel'yanov, D. Yu. ;
Kulpeshov, B. Sh. ;
Sudoplatov, S. V. .
ALGEBRA AND LOGIC, 2019, 57 (06) :429-444
[4]   PROPERTIES OF RANKS FOR FAMILIES OF STRONGLY MINIMAL THEORIES [J].
Kulpeshov, B. Sh ;
Sudoplatov, S., V .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (01) :120-124
[5]   Vaught's conjecture for quite o-minimal theories [J].
Kulpeshov, B. Sh. ;
Sudoplatov, S. V. .
ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (01) :129-149
[6]  
Kulpeshov B. Sh., 2013, J. Math. Sci. (N. Y.), V188, P387, DOI [10.1007/s10958-012-1136-1, DOI 10.1007/S10958-012-1136-1]
[7]  
Kulpeshov B. Sh., 2003, Izv. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz.-Mat, V227, P26
[8]   Weakly o-minimal structures and some of their properties [J].
Kulpeshov, BS .
JOURNAL OF SYMBOLIC LOGIC, 1998, 63 (04) :1511-1528
[9]   Weakly o-minimal structures and real closed fields [J].
Macpherson, D ;
Marker, D ;
Steinhorn, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5435-5483
[10]  
Macpherson Dugald., 2011, Finite and algorithmic model theory, V379, P140, DOI DOI 10.1017/CBO9780511974960.005