Extreme 5-dimensional black holes with SU(2)-symmetric horizons

被引:0
作者
Bahuaud, Eric [1 ]
Gunasekaran, Sharmila [2 ]
Kunduri, Hari K. [3 ,4 ]
Woolgar, Eric [5 ,6 ]
机构
[1] Seattle Univ, Dept Math, Seattle, WA 98122 USA
[2] Radboud Univ Nijmegen, Dept Math, IMAPP, NL-6500 GL Nijmegen, Netherlands
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[4] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4K1, Canada
[5] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[6] Univ Alberta, Theoret Phys Inst, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Black Holes; Differential and Algebraic Geometry; ISOMETRY GROUPS; METRICS;
D O I
10.1007/JHEP03(2025)218
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that the near horizon geometry of 5-dimensional extreme (i.e., degenerate) stationary vacuum black holes, with or without cosmological constant, whose event horizons exhibit SU(2) symmetry must be that of a Berger sphere.
引用
收藏
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 2003, A Panoramic View of Riemannian Geometry
[2]   Rigidity of quasi-Einstein metrics: the incompressible case [J].
Bahuaud, Eric ;
Gunasekaran, Sharmila ;
Kunduri, Hari K. ;
Woolgar, Eric .
LETTERS IN MATHEMATICAL PHYSICS, 2023, 114 (01)
[3]   On the existence of orthonormal geodesic bases for Lie algebras [J].
Cairns, Grant ;
Nguyen Thanh Tung Le ;
Nielsen, Anthony ;
Nikolayeysky, Yuri .
NOTE DI MATEMATICA, 2013, 33 (02) :11-18
[4]   Non-trivial m-quasi-Einstein metrics on simple Lie groups [J].
Chen, Zhiqi ;
Liang, Ke ;
Zhu, Fuhai .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (04) :1093-1109
[5]   The topology of general cosmological models [J].
Galloway, Gregory J. ;
Khuri, Marcus A. ;
Woolgar, Eric .
CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (19)
[6]   The general Kerr-de Sitter metrics in all dimensions [J].
Gibbons, GW ;
Lü, H ;
Page, DN ;
Pope, CN .
JOURNAL OF GEOMETRY AND PHYSICS, 2005, 53 (01) :49-73
[7]   The isometry groups of simply connected 3-dimensional unimodular Lie groups [J].
Ha, Ku Yong ;
Lee, Jong Bum .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (02) :189-203
[8]   A higher dimensional stationary rotating black hole must be axisymmetric [J].
Hollands, Stefan ;
Ishibashi, Akihiro ;
Wald, Robert M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (03) :699-722
[9]   CURVATURE AND METRIC [J].
KULKARNI, RS .
ANNALS OF MATHEMATICS, 1970, 91 (02) :311-&
[10]   Gravitational perturbations of higher dimensional rotating black holes: Tensor perturbations [J].
Kunduri, Hari K. ;
Lucietti, James ;
Reall, Harvey S. .
PHYSICAL REVIEW D, 2006, 74 (08)