Realizing the entanglement Hamiltonian of a topological quantum Hall system

被引:3
作者
Redon, Quentin [1 ]
Liu, Qi [1 ]
Bouhiron, Jean-Baptiste [1 ]
Mittal, Nehal [1 ]
Fabre, Aurelien [1 ]
Lopes, Raphael [1 ]
Nascimbene, Sylvain [1 ]
机构
[1] Sorbonne Univ, ENS PSL Univ, Coll France, CNRS,Lab Kastler Brossel, Paris, France
关键词
DUALITY CONDITION; EDGE STATES; ENTROPY;
D O I
10.1038/s41467-024-54085-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological quantum many-body systems are characterized by a hidden order encoded in the entanglement between their constituents. While entanglement is often quantified using the entanglement entropy, its full description relies on the entanglement Hamiltonian, which is commonly used to identify complex phases arising in numerical simulations, but whose measurement remains an outstanding challenge. Here, we map entanglement to spectral properties by realizing a physical system whose single-particle dynamics is governed by the entanglement Hamiltonian of a quantum Hall system. We use a synthetic dimension, encoded in the electronic spin of dysprosium atoms, to implement spatially deformed dynamics, as suggested by the Bisognano-Wichmann prediction. The realized Hamiltonian, probed with bosonic atoms with negligible interactions, exhibits a chiral dispersion akin to a topological edge mode, revealing the fundamental link between entanglement and boundary physics. We numerically show that our protocol could be extended to interacting systems in fractional quantum Hall states. Spatial entanglement in many-body systems is fully characterized by the entanglement Hamiltonian, but its measurement has remained challenging. Here the authors realize this for a topological quantum Hall system using ultracold gases of dysprosium atoms.
引用
收藏
页数:14
相关论文
共 60 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]   Bose-Hubbard physics in synthetic dimensions from interaction Trotterization [J].
Barbiero, L. ;
Chomaz, L. ;
Nascimbene, S. ;
Goldman, N. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (04)
[3]   Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator [J].
Bauer, B. ;
Cincio, L. ;
Keller, B. P. ;
Dolfi, M. ;
Vidal, G. ;
Trebst, S. ;
Ludwig, A. W. W. .
NATURE COMMUNICATIONS, 2014, 5
[4]   Spectrum Estimation of Density Operators with Alkaline-Earth Atoms [J].
Beverland, Michael E. ;
Haah, Jeongwan ;
Alagic, Gorjan ;
Campbell, Gretchen K. ;
Rey, Ana Maria ;
Gorshkov, Alexey V. .
PHYSICAL REVIEW LETTERS, 2018, 120 (02)
[5]   DUALITY CONDITION FOR A HERMITIAN SCALAR FIELD [J].
BISOGNANO, JJ ;
WICHMANN, EH .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (04) :985-1007
[6]   DUALITY CONDITION FOR QUANTUM FIELDS [J].
BISOGNANO, JJ ;
WICHMANN, EH .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (03) :303-321
[7]   A quantum processor based on coherent transport of entangled atom arrays [J].
Bluvstein, Dolev ;
Levine, Harry ;
Semeghini, Giulia ;
Wang, Tout T. ;
Ebadi, Sepehr ;
Kalinowski, Marcin ;
Keesling, Alexander ;
Maskara, Nishad ;
Pichler, Hannes ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2022, 604 (7906) :451-+
[8]   Probing Renyi entanglement entropy via randomized measurements [J].
Brydges, Tiff ;
Elben, Andreas ;
Jurcevic, Petar ;
Vermersch, Benoit ;
Maier, Christine ;
Lanyon, Ben P. ;
Zoller, Peter ;
Blatt, Rainer ;
Roos, Christian F. .
SCIENCE, 2019, 364 (6437) :260-+
[9]   Entanglement spectrum in one-dimensional systems [J].
Calabrese, Pasquale ;
Lefevre, Alexandre .
PHYSICAL REVIEW A, 2008, 78 (03)
[10]   Probing chiral edge dynamics and bulk topology of a synthetic Hall system [J].
Chalopin, Thomas ;
Satoor, Tanish ;
Evrard, Alexandre ;
Makhalov, Vasiliy ;
Dalibard, Jean ;
Lopes, Raphael ;
Nascimbene, Sylvain .
NATURE PHYSICS, 2020, 16 (10) :1017-+