Visualizing Quantum Entanglement in Bose-Einstein Condensates Without State Vectors

被引:0
作者
Thompson, Russell B. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Entanglement; Exchange; Bose-Einstein condensate; Self-consistent field theory; Density functional theory; Quantum mechanics; DYNAMICS;
D O I
10.1007/s10773-024-05880-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ring polymer self-consistent field theory is used to calculate the critical temperatures and heat capacities of an ideal Bose gas for an order of magnitude more particles than previously reported. A lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\lambda }$$\end{document}-transition indicative of Bose-Einstein condensation is observed as expected. Using a known proof of spatial mode entanglement in Bose-Einstein condensates, a relationship between boson exchange and quantum entanglement is established. This is done without the use of state vectors, since ring polymer quantum theory uses instead a thermal degree of freedom, sometimes called the "imaginary time", to map classical statistical mechanics onto non-relativistic quantum mechanics through the theorems of density functional theory. It is shown that quantum phenomena, such as Bose-Einstein condensation, boson exchange, entanglement and contextuality, can be visualized in terms of merging and separating ring polymer threads in thermal-space. A possible extension to fermions is mentioned.
引用
收藏
页数:16
相关论文
共 67 条
[1]   Entanglement Spectrum of the Two-Dimensional Bose-Hubbard Model [J].
Alba, Vincenzo ;
Haque, Masudul ;
Laeuchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[2]   STATISTICAL INTERPRETATION OF QUANTUM MECHANICS [J].
BALLENTI.LE .
REVIEWS OF MODERN PHYSICS, 1970, 42 (04) :358-&
[3]   Theory of noninteracting fermions and bosons in the canonical ensemble [J].
Barghathi, Hatem ;
Yu, Jiangyong ;
Del Maestro, Adrian .
PHYSICAL REVIEW RESEARCH, 2020, 2 (04)
[4]  
Bassi A., 2003, Dynamical reduction models. Phys. Reports, V379, P257
[5]  
Bell J.S., 1964, PHYSICS, V1, P195, DOI [10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[6]  
Bransden BH., 2003, Quantum Mechanics
[7]   Network architecture for a topological quantum computer in silicon [J].
Buonacorsi, Brandon ;
Cai, Zhenyu ;
Ramirez, Eduardo B. ;
Willick, Kyle S. ;
Walker, Sean M. ;
Li, Jiahao ;
Shaw, Benjamin D. ;
Xu, Xiaosi ;
Benjamin, Simon C. ;
Baugh, Jonathan .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02)
[8]   PATH-INTEGRALS IN THE THEORY OF CONDENSED HELIUM [J].
CEPERLEY, DM .
REVIEWS OF MODERN PHYSICS, 1995, 67 (02) :279-355
[9]   EXPLOITING THE ISOMORPHISM BETWEEN QUANTUM-THEORY AND CLASSICAL STATISTICAL-MECHANICS OF POLYATOMIC FLUIDS [J].
CHANDLER, D ;
WOLYNES, PG .
JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (07) :4078-4095
[10]  
Cohen-Tannoudji C., 1977, QUANTUM MECH