Tensorial inversion of fourth-order material tensor: orthotropy and transverse isotropy

被引:0
作者
Hartmann, Stefan [1 ]
Schroder, Jorg [2 ]
机构
[1] Tech Univ Clausthal, Inst Appl Mech, Adolph Roemer Str 2, D-38678 Clausthal Zellerfeld, Germany
[2] Univ Duisburg Essen, Inst Mech, Univ Str 15, D-45141 Essen, Germany
关键词
Linear elasticity; Orthotropy; Transverse isotropy; Compliance; SPECTRAL DECOMPOSITION; INVARIANT FORMULATION;
D O I
10.1007/s00419-024-02745-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the theory of anisotropic linear elasticity, there are different approaches to define the elasticity in a coordinate-dependent relation by matrices-commonly, the Voigt-notation-or tensorial expressions using fourth-order tensors. In view of numerical treatment, for example, the finite element method, the stress state is defined by the strain state via the fourth-order elasticity tensor, T=CE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T} = {\pmb {\mathcal {{C}}}} \textbf{E}$$\end{document}. In view of analytical considerations required, for instance, for parameter identification purposes, the inverse relation E=C-1T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{E} = {\pmb {\mathcal {{C}}}}<^>{-1} \textbf{T}$$\end{document} is necessary. In this paper, the inversion of the fourth-order representation is developed in a coordinate-free representation. using the concept of invariant theory, which is based on the principal invariants and the so-called mixed invariants of the strain tensor/stress tensor. The mixed invariants are defined in terms of the structural tensors, which represent the preferred directions of the material under consideration. The advantage here is that the constitutive equations for the anisotropic material (which are invariant under the elements of the material symmetry group) can be represented as isotopic tensor functions. Thus, the compliance tensor C-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pmb {\mathcal {{C}}}}<^>{-1}$$\end{document} can be obtained for any orientation of the anisotropy axes. We limit ourselves here to the case of transverse isotropy and orthotropy in a coordinate invariant representation.
引用
收藏
页数:11
相关论文
共 21 条
[11]  
RYCHLEWSKI J, 1984, PMM-J APPL MATH MEC+, V48, P303
[12]  
Schröder J, 2004, ARCH APPL MECH, V73, P533, DOI [10.1007/s00419-003-0294-5, 10.1007/S00419-003-0294-5]
[13]   Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions [J].
Schröder, J ;
Neff, P .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (02) :401-445
[14]  
Schröder J, 2010, CISM COURSES LECT, V516, P53
[15]   A modified least-squares mixed finite element with improved momentum balance [J].
Schwarz, A. ;
Schroeder, J. ;
Starke, G. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (03) :286-306
[16]   ADJUSTMENT OF AN INVERSE MATRIX CORRESPONDING TO A CHANGE IN ONE ELEMENT OF A GIVEN MATRIX [J].
SHERMAN, J ;
MORRISON, WJ .
ANNALS OF MATHEMATICAL STATISTICS, 1950, 21 (01) :124-127
[17]  
Spencer A.J. M., 1984, CONTINUUM THEORY MEC, P1, DOI [DOI 10.1007/978-3-7091-4336-0_1, 10.1007/978-3-7091-4336-0_1, 10.1007/978-3-7091-4336-0_, DOI 10.1007/978-3-7091-4336-0]
[18]   Spectral decomposition of the linear elastic tensor for monoclinic symmetry [J].
Theocaris, PS ;
Sokolis, DP .
ACTA CRYSTALLOGRAPHICA SECTION A, 1999, 55 :635-647
[19]  
Vannucci P, 2018, Lecture Notes in Applied and Computational Mechanics, V85
[20]   On the spectral decomposition of the elasticity tensor for the cubic crystal system [J].
Wheeler, Lewis .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (08) :727-731