Tensorial inversion of fourth-order material tensor: orthotropy and transverse isotropy

被引:0
作者
Hartmann, Stefan [1 ]
Schroder, Jorg [2 ]
机构
[1] Tech Univ Clausthal, Inst Appl Mech, Adolph Roemer Str 2, D-38678 Clausthal Zellerfeld, Germany
[2] Univ Duisburg Essen, Inst Mech, Univ Str 15, D-45141 Essen, Germany
关键词
Linear elasticity; Orthotropy; Transverse isotropy; Compliance; SPECTRAL DECOMPOSITION; INVARIANT FORMULATION;
D O I
10.1007/s00419-024-02745-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the theory of anisotropic linear elasticity, there are different approaches to define the elasticity in a coordinate-dependent relation by matrices-commonly, the Voigt-notation-or tensorial expressions using fourth-order tensors. In view of numerical treatment, for example, the finite element method, the stress state is defined by the strain state via the fourth-order elasticity tensor, T=CE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T} = {\pmb {\mathcal {{C}}}} \textbf{E}$$\end{document}. In view of analytical considerations required, for instance, for parameter identification purposes, the inverse relation E=C-1T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{E} = {\pmb {\mathcal {{C}}}}<^>{-1} \textbf{T}$$\end{document} is necessary. In this paper, the inversion of the fourth-order representation is developed in a coordinate-free representation. using the concept of invariant theory, which is based on the principal invariants and the so-called mixed invariants of the strain tensor/stress tensor. The mixed invariants are defined in terms of the structural tensors, which represent the preferred directions of the material under consideration. The advantage here is that the constitutive equations for the anisotropic material (which are invariant under the elements of the material symmetry group) can be represented as isotopic tensor functions. Thus, the compliance tensor C-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pmb {\mathcal {{C}}}}<^>{-1}$$\end{document} can be obtained for any orientation of the anisotropy axes. We limit ourselves here to the case of transverse isotropy and orthotropy in a coordinate invariant representation.
引用
收藏
页数:11
相关论文
共 21 条
[1]  
Christensen R. M., 1979, Mechanics of composite materials
[2]   Parameter estimation and its influence on layered metal-composite-metal plates simulation [J].
Dileep, Pranav Kumar ;
Hartmann, Stefan ;
Hua, Wei ;
Palkowski, Heinz ;
Fischer, Tobias ;
Ziegmann, Gerhard .
ACTA MECHANICA, 2022, 233 (07) :2891-2929
[3]   THERMODYNAMICS OF A CONTINUUM WITH INTERNAL CONSTRAINTS [J].
GREEN, AE ;
NAGHDI, PM ;
TRAPP, JA .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1970, 8 (11) :891-&
[4]   Experiment, modeling and simulation of bypassing holes in composites [J].
Hartmann, Stefan ;
Marghzar, Ali Kheiri ;
Gilbert, Rose Rogin ;
Pangboonyanon, Woramon ;
Meiners, Dieter .
COMPOSITE STRUCTURES, 2020, 234
[5]  
Haupt P., 2002, Continuum Mechanics and Theory of Materials, V2, DOI DOI 10.1007/978-3-662-04775-0
[6]   A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function [J].
Itskov, M ;
Aksel, N .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (14) :3833-3848
[7]  
Itskov M., 2007, Tensor Algebra and Tensor Analysis for Engineers
[8]  
Kaw A.K., 2006, Mechanics of Composite Materials, V2nd
[9]   EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC-MATERIALS [J].
MEHRABADI, MM ;
COWIN, SC .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1990, 43 :15-41
[10]   STRAIN-ENERGY DENSITY BOUNDS FOR LINEAR ANISOTROPIC ELASTIC-MATERIALS [J].
MEHRABADI, MM ;
COWIN, SC ;
HORGAN, CO .
JOURNAL OF ELASTICITY, 1993, 30 (02) :191-196