EAQEC codes from the LCD codes decomposition of linear codesEAQEC codes from the LCD codes decomposition of linear...H. Li, X. Liu

被引:0
作者
Hui Li [1 ]
Xiusheng Liu [2 ]
机构
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
关键词
Entanglement-assisted quantum error-correcting codes; LCD codes; Matrix-product codes; Generalized Reed–Solomon codes; 11T71; 94B15; 94B65;
D O I
10.1007/s11128-024-04630-4
中图分类号
学科分类号
摘要
In this paper, we provide two new methods of constructing entanglement-assisted quantum error-correcting (EAQEC) codes by using the LCD codes decomposition of linear codes. We first construct a class of maximal entanglement EAQEC maximum distance separable codes via the LCD codes decomposition of generalized Reed–Solomon (GRS) codes over finite fields F2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^m}$$\end{document}. We then construct two classes of maximal entanglement EAQEC codes based on the LCD codes decomposition of matrix-product codes related to cyclic codes over finite fields Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}$$\end{document}. In addition, we construct EAQEC codes with better parameters than the ones available in the literature.
引用
收藏
相关论文
empty
未找到相关数据