EAQEC codes from the LCD codes decomposition of linear codesEAQEC codes from the LCD codes decomposition of linear...H. Li, X. Liu
被引:0
作者:
Hui Li
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Polytechnic University,School of Mathematics and PhysicsHubei Polytechnic University,School of Mathematics and Physics
Hui Li
[1
]
Xiusheng Liu
论文数: 0引用数: 0
h-index: 0
机构:
College of Arts and Science of Hubei Normal University,School of Science and TechnologyHubei Polytechnic University,School of Mathematics and Physics
Xiusheng Liu
[2
]
机构:
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
In this paper, we provide two new methods of constructing entanglement-assisted quantum error-correcting (EAQEC) codes by using the LCD codes decomposition of linear codes. We first construct a class of maximal entanglement EAQEC maximum distance separable codes via the LCD codes decomposition of generalized Reed–Solomon (GRS) codes over finite fields F2m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}_{2^m}$$\end{document}. We then construct two classes of maximal entanglement EAQEC codes based on the LCD codes decomposition of matrix-product codes related to cyclic codes over finite fields Fq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}_{q}$$\end{document}. In addition, we construct EAQEC codes with better parameters than the ones available in the literature.