A contrastive neural disentanglement approach for query performance prediction

被引:0
|
作者
Salamat, Sara [1 ]
Arabzadeh, Negar [2 ]
Seyedsalehi, Shirin [1 ]
Bigdeli, Amin [2 ]
Zihayat, Morteza [1 ]
Bagheri, Ebrahim [3 ]
机构
[1] Toronto Metropolitan Univ, Toronto, ON, Canada
[2] Univ Waterloo, Waterloo, ON, Canada
[3] Univ Toronto, Toronto, ON, Canada
关键词
Query performance Prediction; Information retrieval; Neural disentanglement;
D O I
10.1007/s10994-025-06752-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel approach, referred to as contrastive disentangled representation for query performance prediction (CoDiR-QPP), to estimate search query performance by disentangling query content semantics from query difficulty. Our proposed approach leverages neural disentanglement to isolate the information need expressed in search queries from the complexities that affect retrieval performance. Motivated by empirical observations that varying query formulations for the same information need can significantly impact retrieval outcomes, we hypothesize that separating content semantics from query difficulty can enhance query performance prediction. Utilizing contrastive learning, CoDiR-QPP distinguishes between well-performing and poorly performing query variants, facilitating the estimation of a given query's performance. Our extensive experiments on four standard benchmark datasets demonstrate that CoDiR-QPP outperforms state-of-the-art baselines in predicting query performance, offering improved semantic similarity computation and higher correlation metrics such as Kendall tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}, Spearman rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho$$\end{document}, and scaled Mean Absolute Ranking Error (sMARE).
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A Neural Networks Approach to SPARQL Query Performance Prediction
    Amat, Daniel Arturo Casal
    Buil-Aranda, Carlos
    Valle-Vidal, Carlos
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
  • [2] Neural Disentanglement of Query Difficulty and Semantics
    Salamat, Sara
    Arabzadeh, Negar
    Seyedsalehi, Shirin
    Bigdeli, Amin
    Zihayat, Morteza
    Bagheri, Ebrahim
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4264 - 4268
  • [3] Query Performance Prediction for Neural IR: Are We There Yet?
    Faggioli, Guglielmo
    Formal, Thibault
    Marchesin, Stefano
    Clinchant, Stephane
    Ferro, Nicola
    Piwowarski, Benjamin
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT I, 2023, 13980 : 232 - 248
  • [4] A Machine Learning Approach to SPARQL Query Performance Prediction
    Hasan, Rakebul
    Gandon, Fabien
    2014 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2014, : 266 - 273
  • [5] Query performance prediction
    He, Ben
    Ounis, Iadh
    INFORMATION SYSTEMS, 2006, 31 (07) : 585 - 594
  • [6] A `Pointwise-Query, Listwise-Document' based Query Performance Prediction Approach
    Datta, Suchana
    MacAvaney, Sean
    Ganguly, Debasis
    Greene, Derek
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2148 - 2153
  • [7] A semantic approach to post-retrieval query performance prediction
    Jafarzadeh, Parastoo
    Ensan, Faezeh
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (01)
  • [8] An Enhanced Approach to Query Performance Prediction Using Reference Lists
    Roitman, Haggai
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 869 - 872
  • [9] Unsupervised Query Performance Prediction for Neural Models with Pairwise Rank Preferences
    Singh, Ashutosh
    Ganguly, Debasis
    Datta, Suchana
    Macdonald, Craig
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 2486 - 2490
  • [10] Towards Query Performance Prediction for Neural Information Retrieval: Challenges and Opportunities
    Faggioli, Guglielmo
    Formal, Thibault
    Lupart, Simon
    Marchesin, Stefano
    Clinchant, Stephane
    Ferro, Nicola
    Piwowarski, Benjamin
    PROCEEDINGS OF THE 2023 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2023, 2023, : 51 - 63