Deformation theory for finite cluster complexes

被引:0
|
作者
Ilten, Nathan [1 ]
Chavez, Alfredo Najera [2 ]
Treffinger, Hipolito [3 ,4 ]
机构
[1] Simon Fraser Univ, Dept Math, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Ctr Hist, Leon 2, Oaxaca De Juarez 68000, Oaxaca, Mexico
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Pabellon 1 Ciudad Univ, RA-1428 Buenos Aires, Argentina
[4] IMAS CONICET, RA-1428 Buenos Aires, Argentina
基金
欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
ALGEBRAS; CATEGORIES;
D O I
10.1007/s00209-025-03691-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the deformation theory of the Stanley-Reisner rings associated to cluster complexes for skew-symmetrizable cluster algebras of geometric and finite cluster type. In particular, we show that in the skew-symmetric case, these cluster complexes are unobstructed, generalizing a result of Ilten and Christophersen in the An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document} case. We also study the connection between cluster algebras with universal coefficients and cluster complexes. We show that for a full rank positively graded cluster algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of geometric and finite cluster type, the cluster algebra Auniv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}<^>\textrm{univ}$$\end{document} with universal coefficients may be recovered as the universal family over a partial closure of a torus orbit in a multigraded Hilbert scheme. Likewise, we show that under suitable hypotheses, the cluster algebra Auniv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}<^>\textrm{univ}$$\end{document} may be recovered as the coordinate ring for a certain torus-invariant semiuniversal deformation of the Stanley-Reisner ring of the cluster complex. We apply these results to show that for any cluster algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of geometric and finite cluster type, A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} is Gorenstein, and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} is unobstructed if it is skew-symmetric. Moreover, if A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} has enough frozen variables then it has no non-trivial torus-invariant deformations. We also study the Gr & ouml;bner theory of the ideal of relations among cluster and frozen variables of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}. As a byproduct we generalize previous results in this setting obtained by Bossinger, Mohammadi and N & aacute;jera Ch & aacute;vez for Grassmannians of planes and Gr(3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Gr}\,}}(3,6)$$\end{document}.
引用
收藏
页数:54
相关论文
共 50 条
  • [42] Plastic theory for the multi-crystal metals - From infinitesimal deformation to finite deformation
    Li, MR
    Zhou, Z
    Huang, WB
    PROGRESS IN NATURAL SCIENCE, 2003, 13 (01) : 25 - 30
  • [43] Finite element formulation for finite deformation, isotropic viscoplasticity theory based on overstress (FVBO)
    Gomaa, S
    Sham, TL
    Krempl, E
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (13) : 3607 - 3624
  • [44] On a Deformation Theory of Finite Dimensional Modules Over Repetitive Algebras
    Fonce-Camacho, Adriana
    Giraldo, Hernan
    Rizzo, Pedro
    Velez-Marulanda, Jose A.
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (01) : 1 - 22
  • [45] DEFORMATION MEASUREMENT OF A SHELL THEORY WITH EXPLICIT INCLUSION OF FINITE ROTATION
    SANSOUR, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (04): : T245 - T247
  • [46] A finite deformation theory for the climbing habits and attachment of twining plants
    Zhang, Yingchao
    Wu, Jian
    Ma, Yinji
    Chen, Hang
    Chen, Ying
    Lu, Bingwei
    Feng, Xue
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2018, 116 : 171 - 184
  • [47] A RATE-INDEPENDENT CONSTITUTIVE THEORY FOR FINITE INELASTIC DEFORMATION
    CARROLL, MM
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1987, 54 (01): : 15 - 21
  • [48] A theory of finite tensile deformation of double-network hydrogels
    Shams Es-haghi, Siamak
    Weiss, Robert A.
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (16) : 2476 - 2487
  • [49] An elementary nonlinear beam theory with finite buckling deformation properties
    Russell, DL
    White, LW
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) : 1394 - 1413
  • [50] Topology optimization of dynamic problems based on finite deformation theory
    Ogawa, Shun
    Yamada, Takayuki
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (17) : 4486 - 4506