Deformation theory for finite cluster complexes

被引:0
|
作者
Ilten, Nathan [1 ]
Chavez, Alfredo Najera [2 ]
Treffinger, Hipolito [3 ,4 ]
机构
[1] Simon Fraser Univ, Dept Math, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Ctr Hist, Leon 2, Oaxaca De Juarez 68000, Oaxaca, Mexico
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Pabellon 1 Ciudad Univ, RA-1428 Buenos Aires, Argentina
[4] IMAS CONICET, RA-1428 Buenos Aires, Argentina
基金
欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
ALGEBRAS; CATEGORIES;
D O I
10.1007/s00209-025-03691-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the deformation theory of the Stanley-Reisner rings associated to cluster complexes for skew-symmetrizable cluster algebras of geometric and finite cluster type. In particular, we show that in the skew-symmetric case, these cluster complexes are unobstructed, generalizing a result of Ilten and Christophersen in the An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document} case. We also study the connection between cluster algebras with universal coefficients and cluster complexes. We show that for a full rank positively graded cluster algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of geometric and finite cluster type, the cluster algebra Auniv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}<^>\textrm{univ}$$\end{document} with universal coefficients may be recovered as the universal family over a partial closure of a torus orbit in a multigraded Hilbert scheme. Likewise, we show that under suitable hypotheses, the cluster algebra Auniv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}<^>\textrm{univ}$$\end{document} may be recovered as the coordinate ring for a certain torus-invariant semiuniversal deformation of the Stanley-Reisner ring of the cluster complex. We apply these results to show that for any cluster algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of geometric and finite cluster type, A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} is Gorenstein, and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} is unobstructed if it is skew-symmetric. Moreover, if A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} has enough frozen variables then it has no non-trivial torus-invariant deformations. We also study the Gr & ouml;bner theory of the ideal of relations among cluster and frozen variables of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}. As a byproduct we generalize previous results in this setting obtained by Bossinger, Mohammadi and N & aacute;jera Ch & aacute;vez for Grassmannians of planes and Gr(3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Gr}\,}}(3,6)$$\end{document}.
引用
收藏
页数:54
相关论文
共 50 条