Global Daily Column Average CO2 at 0.1° x 0.1° Spatial Resolution Integrating OCO-3, GOSAT, CAMS with EOF and Deep Learning

被引:1
作者
Lopez, Franz Pablo Antezana [1 ]
Zhou, Guanhua [1 ]
Jing, Guifei [2 ]
Zhang, Kai [3 ]
Chen, Liangfu [4 ]
Chen, Lin [5 ]
Tan, Yumin [6 ]
机构
[1] Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Hangzhou Int Innovat Inst, Hangzhou 311115, Peoples R China
[3] Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[5] Natl Satellite Meteorol Ctr, Beijing 100081, Peoples R China
[6] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
ORBITING CARBON OBSERVATORY-2; SURFACE TEMPERATURE SATELLITE; CONVOLUTIONAL NEURAL-NETWORK; GREENHOUSE-GAS REANALYSIS; RETRIEVAL ALGORITHM; XCO2; RETRIEVAL; RECONSTRUCTION; PERFORMANCE; TANSO-FTS-2; EMISSIONS;
D O I
10.1038/s41597-024-04135-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate global carbon dioxide (CO2) distribution with high spatial and temporal resolution is essential for understanding its dynamics and impacts on climate change. This study tackles the challenge of data gaps in satellite observations of greenhouse gases, caused by orbital and observational limitations. We reconstructed a comprehensive dataset of Column-averaged CO2 (XCO2) concentrations by integrating re-analyzed data from the Copernicus Atmosphere Monitoring Service (CAMS) with observations from GOSAT and OCO-3 satellites. Using two advanced data reconstruction methods-Data Interpolating Empirical Orthogonal Functions (DINEOF) and Convolutional Auto-Encoder (DINCAE)-we imputed missing data, preserving spatial and temporal consistency. The combined approach achieved high accuracy, with Pearson correlation values between 0.94 and 0.95 against TCCON measurements, and we also reported root mean square error (RMSE) to assess model performance further. Our results indicate that these techniques generate a daily, high-resolution, gap-free XCO2 dataset, enabling improved CO2 monitoring, climate modeling, and policy development.
引用
收藏
页数:17
相关论文
共 107 条
  • [1] Adak S., 2023, Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches, P15
  • [2] Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020
    Agusti-Panareda, Anna
    Barre, Jerome
    Massart, Sebastien
    Inness, Antje
    Aben, Ilse
    Ades, Melanie
    Baier, Bianca C.
    Balsamo, Gianpaolo
    Borsdorff, Tobias
    Bousserez, Nicolas
    Boussetta, Souhail
    Buchwitz, Michael
    Cantarello, Luca
    Crevoisier, Cyril
    Engelen, Richard
    Eskes, Henk
    Flemming, Johannes
    Garrigues, Sebastien
    Hasekamp, Otto
    Huijnen, Vincent
    Jones, Luke
    Kipling, Zak
    Langerock, Bavo
    McNorton, Joe
    Meilhac, Nicolas
    Noel, Stefan
    Parrington, Mark
    Peuch, Vincent-Henri
    Ramonet, Michel
    Razinger, Miha
    Reuter, Maximilian
    Ribas, Roberto
    Suttie, Martin
    Sweeney, Colm
    Tarniewicz, Jerome
    Wu, Lianghai
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (06) : 3829 - 3859
  • [3] Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions:: application to the Adriatic Sea surface temperature
    Alvera-Azcárate, A
    Barth, A
    Rixen, M
    Beckers, JM
    [J]. OCEAN MODELLING, 2005, 9 (04) : 325 - 346
  • [4] Alvera-Azcárate A, 2011, MEDITERR MAR SCI, V12, P5
  • [5] Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields
    Alvera-Azcarate, A.
    Barth, A.
    Beckers, J. -M.
    Weisberg, R. H.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2007, 112 (C3)
  • [6] [Anonymous], 2021, CLIMATE CHANGE 2021, V2023, P3, DOI [DOI 10.1017/9781009157926, 10.1017/9781009157940, DOI 10.1017/9781009157896, 10.1017/CBO9781107415324, DOI 10.1017/CBO9781107415324, 10.1017/9781009157896.001]
  • [7] Antezana Lopez Franz Pablo, 2024, Zenodo, DOI 10.5281/ZENODO.13895409
  • [8] DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations
    Barth, Alexander
    Alvera-Azcarate, Aida
    Troupin, Charles
    Beckers, Jean-Marie
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (05) : 2183 - 2196
  • [9] DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations
    Barth, Alexander
    Alvera-Azcarate, Aida
    Licer, Matjaz
    Beckers, Jean-Marie
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (03) : 1609 - 1622
  • [10] Basilio R. R., 2010, The quest for an OCO (Orbiting Carbon Observatory) re-flight, DOI [10.1117/12.867042, DOI 10.1117/12.867042]