Boron Surface Treatment of Li7La3Zr2O12 Enabling Solid Composite Electrolytes for Li-Metal Battery Applications

被引:1
|
作者
Cuevas, Ignacio [1 ]
Elbouazzaoui, Kenza [1 ]
Valvo, Mario [1 ]
Mindemark, Jonas [1 ]
Brandell, Daniel [1 ]
Edstrom, Kristina [1 ]
机构
[1] Uppsala Univ, Dept Chem, Angstrom Lab, Box 538, SE-75121 Uppsala, Sweden
基金
欧洲研究理事会;
关键词
Composite polymer electrolytes; Surface treatment; LLZO; Ionic transport; Solid Li-metal batteries; INTERFACIAL RESISTANCE; HYBRID ELECTROLYTES; CRYSTAL-STRUCTURE; POLYMER; PERFORMANCE; STABILITY; CHEMISTRY; MECHANISM; TRANSPORT; AL;
D O I
10.1002/cssc.202401304
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite being promoted as a superior Li-ion conductor, lithium lanthanum zirconium oxide (LLZO) still suffers from a number of shortcomings when employed as an active ceramic filler in composite polymer-ceramic solid electrolytes for rechargeable all-solid-state lithium metal batteries. One of the main limitations is the detrimental presence of Li2CO3 on the surface of LLZO particles, restricting Li-ion transport at the polymer-ceramic interfaces. In this work, a facile way to improve this interface is presented, by purposely engineering the LLZO particle surfaces for a better compatibility with a PEO:LiTFSI solid polymer electrolyte matrix. It is shown that a surface treatment based on immersing LLZO particles in a boric acid solution can improve the LLZO surface chemistry, resulting in an enhancement in the ionic conductivity and cation transference number of the CPE with 20 wt % of boron-treated LLZO particles compared to the analogous CPE with non-treated LLZO. Ultimately, an improved cycling performance and stability in Li//LiFePO4 cells was also demonstrated for the modified material.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Optimizing Li plus transport in Li7La3Zr2O12 solid electrolytes
    Parascos, Kade
    Watts, Joshua L.
    Alarco, Jose A.
    Chen, Yan
    Talbot, Peter C.
    CERAMICS INTERNATIONAL, 2023, 49 (14) : 23082 - 23090
  • [2] Method Using Water-Based Solvent to Prepare Li7La3Zr2O12 Solid Electrolytes
    Huang, Xiao
    Lu, Yang
    Tin, Jun
    Gu, Sui
    Xiu, Tongping
    Song, Zhen
    Badding, Michael E.
    Wen, Zhaoyin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (20) : 17147 - 17155
  • [3] Solid-state lithium battery with garnet Li7La3Zr2O12 nanofibers composite polymer electrolytes
    Wang, Yifei
    Liu, Tao
    Liu, Chuwei
    Liu, Guoqiang
    Yu, Jingkun
    Zou, Qingjie
    SOLID STATE IONICS, 2022, 378
  • [4] Doping implications of Li solid state electrolyte Li7La3Zr2O12
    Eggestad, Kristoffer
    Selbach, Sverre M.
    Williamson, Benjamin A. D.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (26) : 15666 - 15675
  • [5] Tortuosity Effects in Garnet-Type Li7La3Zr2O12 Solid Electrolytes
    Dixit, Marm B.
    Regala, Matthew
    Shen, Fengyu
    Xiao, Xianghui
    Hatzell, Kelsey B.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (02) : 2022 - 2030
  • [6] The Ab Initio Calculations on the Areal Specific Resistance of Li-Metal/Li7La3Zr2O12 Interphase
    Goo, Jian
    Guo, Xuyun
    Li, Yutao
    Ma, Zhaohui
    Guo, Xiangxin
    Li, Hong
    Zhu, Ye
    Zhou, Weidong
    ADVANCED THEORY AND SIMULATIONS, 2019, 2 (06)
  • [7] Growth strategies of Li7La3Zr2O12 electrolytes for Li-ion thin film battery
    Singh, Jitendra Pal
    Paidi, Anil K.
    Lee, Sangsul
    CHEMICAL ENGINEERING JOURNAL ADVANCES, 2023, 16
  • [8] Stability of composite electrolytes based on Li7La3Zr2O12 to metallic lithium
    Il'ina, E. A.
    Druzhinin, K. V.
    Antonov, B. D.
    IONICS, 2020, 26 (01) : 163 - 172
  • [9] Stability of composite electrolytes based on Li7La3Zr2O12 to metallic lithium
    E. A. Il’ina
    K. V. Druzhinin
    B. D. Antonov
    Ionics, 2020, 26 : 163 - 172
  • [10] Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery
    Jin, Ying
    McGinn, Paul J.
    JOURNAL OF POWER SOURCES, 2013, 239 : 326 - 331