Celestial Lw1+∞ charges from a twistor action

被引:4
作者
Kmec, Adam [1 ]
Mason, Lionel [1 ]
Ruzziconi, Romain [1 ]
Srikant, Akshay Yelleshpur [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 10期
关键词
Classical Theories of Gravity; Gauge Symmetry; Global Symmetries; Space-Time Symmetries; ASYMPTOTIC SYMMETRIES; GRAVITATIONAL WAVES; GENERAL RELATIVITY; CONSERVATION-LAWS; GRAVITY;
D O I
10.1007/JHEP10(2024)250
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The celestial Lw1+infinity symmetries in asymptotically flat spacetimes have a natural geometric interpretation on twistor space in terms of Poisson diffeomorphisms. Using this framework, we provide a first-principle derivation of the canonical generators associated with these symmetries starting from the Poisson BF twistor action for self-dual gravity. We express these charges as surface integrals over the celestial sphere in terms of spacetime data at null infinity. The connection between twistor space and spacetime expressions at I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{I} $$\end{document} is achieved via an integral formula for the asymptotic Bianchi identities due to Bramson and Tod. Finally, we clarify how Lw1+infinity transformations are symmetries of gravity from a phase space perspective by showing the invariance of the asymptotic Bianchi identities.
引用
收藏
页数:41
相关论文
共 85 条
[1]   Null boundary phase space: slicings, news & memory [J].
Adami, H. ;
Grumiller, D. ;
Sheikh-Jabbari, M. M. ;
Taghiloo, V ;
Yavartanoo, H. ;
Zwikel, C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (11)
[2]   Symmetries at null boundaries: two and three dimensional gravity cases [J].
Adami, H. ;
Sheikh-Jabbari, M. M. ;
Taghiloo, V. ;
Yavartanoo, H. ;
Zwikel, C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
[3]   T-Witts from the horizon [J].
Adami, H. ;
Grumiller, D. ;
Sadeghian, S. ;
Sheikh-Jabbari, M. M. ;
Zwikel, C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
[4]   Graviton scattering in self-dual radiative space-times [J].
Adamo, Tim ;
Mason, Lionel ;
Sharma, Atul .
CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (09)
[5]   Celestial w1+∞ Symmetries from Twistor Space [J].
Adamo, Tim ;
Mason, Lionel ;
Sharma, Atul .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
[6]   SYMPLECTIC-GEOMETRY OF RADIATIVE MODES AND CONSERVED QUANTITIES AT NULL INFINITY [J].
ASHTEKAR, A ;
STREUBEL, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1981, 376 (1767) :585-607
[7]   Covariant theory of asymptotic symmetries, conservation laws and central charges [J].
Barnich, G ;
Brandt, F .
NUCLEAR PHYSICS B, 2002, 633 (1-2) :3-82
[8]   Coadjoint representation of the BMS group on celestial Riemann surfaces [J].
Barnich, Glenn ;
Ruzziconi, Romain .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (06)
[9]   BMS current algebra in the context of the Newman-Penrose formalism [J].
Barnich, Glenn ;
Mao, Pujian ;
Ruzziconi, Romain .
CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (09)
[10]   Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity [J].
Barnich, Glenn ;
Troessaert, Cedric .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)