Application of state of health estimation and remaining useful life prediction for lithium-ion batteries based on AT-CNN-BiLSTM

被引:7
作者
Zhao, Feng-Ming [1 ]
Gao, De-Xin [1 ]
Cheng, Yuan-Ming [1 ]
Yang, Qing [2 ]
机构
[1] Qingdao Univ Sci & Technol, Dept Automat & Elect Engn, Qingdao 266061, Peoples R China
[2] Qingdao Univ Sci & Technol, Dept Comp Sci & Technol, Qingdao 266061, Peoples R China
关键词
Lithium-ion battery; State of health; Convolutional neural network; Bidirectional long short-term memory; Attention mechanism;
D O I
10.1038/s41598-024-80421-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ensuring the long-term safe usage of lithium-ion batteries hinges on accurately estimating the State of Health \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textrm{SOH})$$\end{document} and predicting the Remaining Useful Life (RUL). This study proposes a novel prediction method based on a AT-CNN-BiLSTM architecture. Initially, key parameters such as voltage, current, temperature, and SOH are extracted and averaged for each cycle to ensure the uniformity and reliability of the input data. The CNN is utilized to extract deep features from the data, followed by BiLSTM to analyze the temporal dependencies in the data sequences. Since multidimensional parameter data are used to predict the SOH trend of lithium-ion batteries, an attention mechanism is employed to enhance the weight of highly relevant vectors, improving the model's analytical capabilities. Experimental results demonstrate that the CNN-BiLSTM-Attention model achieves an absolute error of 0 in RUL prediction, an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} value greater than 0.9910 , and a MAPE value less than 0.9003 . Comparative analysis with hybrid neural network algorithms such as LSTM, BiLSTM, and CNN-LSTM confirms the proposed model's high accuracy and stability in SOH estimation and RUL prediction.
引用
收藏
页数:15
相关论文
共 36 条
[1]   A review of expert hybrid and co-estimation techniques for SOH and RUL estimation in battery management system with electric vehicle application [J].
Alsuwian, Turki ;
Ansari, Shaheer ;
Zainuri, Muhammad Ammirrul Atiqi Mohd ;
Ayob, Afida ;
Hussain, Aini ;
Lipu, M. S. Hossain ;
Alhawari, Adam R. H. ;
Almawgani, A. H. M. ;
Almasabi, Saleh ;
Hindi, Ayman Taher .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 246
[2]   A new SOH estimation method for Lithium-ion batteries based on model-data-fusion [J].
Chen, Liping ;
Xie, Siqiang ;
Lopes, Antonio M. ;
Li, Huafeng ;
Bao, Xinyuan ;
Zhang, Chaolong ;
Li, Penghua .
ENERGY, 2024, 286
[3]   A Dynamic Spatial-Temporal Attention-Based GRU Model With Healthy Features for State-of-Health Estimation of Lithium-Ion Batteries [J].
Cui, Shengmin ;
Joe, Inwhee .
IEEE ACCESS, 2021, 9 (09) :27374-27388
[4]   Review of battery state estimation methods for electric vehicles-Part II: SOH estimation [J].
Demirci, Osman ;
Taskin, Sezai ;
Schaltz, Erik ;
Demirci, Burcu Acar .
JOURNAL OF ENERGY STORAGE, 2024, 96
[5]   Prediction of Remaining Useful Life of Aero-engines Based on CNN-LSTM-Attention [J].
Deng, Sizhe ;
Zhou, Jian .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
[6]   Research on Co-Estimation Algorithm of SOC and SOH for Lithium-Ion Batteries in Electric Vehicles [J].
Du, Chang-Qing ;
Shao, Jian-Bo ;
Wu, Dong-Mei ;
Ren, Zhong ;
Wu, Zhong-Yi ;
Ren, Wei-Qun .
ELECTRONICS, 2022, 11 (02)
[7]   Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners: A Recommendation System [J].
Ellouze, Ameni ;
Kadri, Nesrine ;
Alaerjan, Alaa ;
Ksantini, Mohamed .
CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01) :351-372
[8]   A novel deep learning framework for state of health estimation of lithium-ion battery [J].
Fan, Yaxiang ;
Xiao, Fei ;
Li, Chaoran ;
Yang, Guorun ;
Tang, Xin .
JOURNAL OF ENERGY STORAGE, 2020, 32
[9]   Small Sample Hyperspectral Image Classification Based on Cascade Fusion of Mixed Spatial-Spectral Features and Second-Order Pooling [J].
Feng, Fan ;
Zhang, Yongsheng ;
Zhang, Jin ;
Liu, Bing .
REMOTE SENSING, 2022, 14 (03)
[10]   Review of energy storage systems for electric vehicle applications: Issues and challenges [J].
Hannan, M. A. ;
Hoque, M. M. ;
Mohamed, A. ;
Ayob, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 :771-789