Equidimensional quiver representations and their U-invariants

被引:0
作者
Panov, Aleksandr N. [1 ]
机构
[1] Samara Natl Res Univ, Mech & Math Dept, Ul Akademika Pavlova 1, Samara, Russia
关键词
Quiver representation; Field of invariants; Maximal unipotent subgroup; Unitriangular group;
D O I
10.1007/s10801-025-01391-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Each quiver Q=(V,A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=(V,A)$$\end{document} defines the group GLQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{GL}}_Q$$\end{document}, which is a product of copies GL(nv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{GL}}(n_v)$$\end{document}, when v ranges through the set of vertices V. A representation of quiver is a representation of the group GLQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{GL}}_Q$$\end{document} in the space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}, which is a direct sum of matrix spaces associated with arrows alpha is an element of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in A$$\end{document}. The classical problem of the theory of invariants is to describe set of generators and their relations of the algebra (or field) of invariants. The problem of construction of generators for the algebra of GLQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{GL}}_Q$$\end{document}-invariants was solved in series of papers by L. Le Bruyn, C. Procesi, and S.Donkin. An open problem is to determine their relations. The group GLQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{GL}}_Q$$\end{document} contains the maximal unipotent subgroup U=UQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U=U_Q$$\end{document}, which is a product of UT(nv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{UT}}(n_v)$$\end{document} over v is an element of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document}. The main problem is to construct the set of generators of the algebra and field of U-invariants. In the paper, we consider the equidimensional representations, i.e. nv=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_v=n$$\end{document}. For an arbitrary quiver, we construct the section of U-action on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} and the system of free generators of the field of U-invariants. The construction of the section and system of generators depends on the choice of an arbitrary map psi:V -> A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi : V\rightarrow A$$\end{document} that assign to each vertex one of the arrows incident to it.
引用
收藏
页数:15
相关论文
共 9 条
[1]   POLYNOMIAL INVARIANTS OF REPRESENTATIONS OF QUIVERS [J].
DONKIN, S .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (01) :137-141
[2]   INVARIANTS OF SEVERAL MATRICES [J].
DONKIN, S .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :389-401
[3]  
LEBRUYN L, 1990, T AM MATH SOC, V317, P585
[4]   INVARIANTS OF CERTAIN GROUPS .1. [J].
MIYATA, T .
NAGOYA MATHEMATICAL JOURNAL, 1971, 41 (FEB) :69-&
[5]   Fields of invariants for unipotent radicals of parabolic subgroups [J].
Panov, Aleksandr N. .
LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (15) :2499-2512
[6]  
Panov AN., 2023, J. Linear Algebra, V39, P123, DOI [10.13001/ela.2023.73551515.15029, DOI 10.13001/ELA.2023.73551515.15029]
[7]  
Popov VL., 1994, Encyclopaedia of Mathematical Sciences 55, 121278
[8]   INVARIANT THEORY OF NXN MATRICES [J].
PROCESI, C .
ADVANCES IN MATHEMATICS, 1976, 19 (03) :306-381
[9]   The field of U-invariants of the adjoint representation of the group GL(n, K) [J].
Vyatkina, K. A. ;
Panov, A. N. .
MATHEMATICAL NOTES, 2013, 93 (1-2) :187-190