Quantifying separability in limit groups via representations

被引:0
|
作者
Brown, Keino [1 ,2 ]
Kharlampovich, Olga [1 ,3 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10016 USA
[2] CUNY City Coll, New York, NY USA
[3] CUNY Hunter Coll, New York, NY 10065 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
RESIDUAL FINITENESS GROWTHS; THEOREM;
D O I
10.1007/s00029-024-01008-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any finitely generated subgroup H of a limit group L there exists a finite-index subgroup K containing H, such that K is a subgroup of a group obtained from H by a series of extensions of centralizers and free products with Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}. If H is non-abelian, the K is fully residually H. We also show that for any finitely generated subgroup of a limit group, there is a finite-dimensional representation of the limit group which separates the subgroup in the induced Zariski topology.rollary, we establish a polynomial upper bound on the size of the quotients used to separate a finitely generated subgroup in a limit group. This generalizes the results in (Louder et al. in Sel Math New Ser 23:2019-2027, 2017). Another corollary is that a hyperbolic limit group satisfies the Geometric Hanna Neumann conjecture.
引用
收藏
页数:19
相关论文
共 49 条