Sentence-graph-level knowledge injection with multi-task learning

被引:0
|
作者
Chen, Liyi [1 ]
Wang, Runze [2 ]
Shi, Chen [2 ]
Yuan, Yifei [3 ]
Liu, Jie [1 ]
Hu, Yuxiang [2 ]
Jiang, Feijun [2 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Peoples R China
来源
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS | 2025年 / 28卷 / 01期
基金
中国国家自然科学基金;
关键词
Language representation learning; Knowledge graph; Knowledge injection; Multi-task learning;
D O I
10.1007/s11280-025-01329-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Language representation learning is a fundamental task for natural language understanding. It aims to represent natural language sentences and classify their mentioned entities and relations, which usually requires injecting external entity and relation knowledge into sentence representation. Existing methods typically inject factual knowledge into pre-trained language models by sequentially concatenating knowledge behind the sentence, with less attention to the structured information from the knowledge graph and the interactive relationship within. In this paper, we learn the sentence representation based on both Sentence- and Graph- level knowledge at the fine-tuning stage with a multi-task learning framework (SenGraph). At sentence-level, we concatenate factual knowledge with the sentence by a sequential structure, and train it with a sentence-level task. At the graph-level, we construct all the knowledge and sentence information as a graph, and introduce a relational GAT to inject useful knowledge into sentences selectively. Meanwhile, we design two graph-based auxiliary tasks to align the heterogeneous embedding space between the natural language sentence and the knowledge graph. We evaluate our model on four knowledge-driven benchmark datasets. The experimental results demonstrate the effectiveness of the proposed method using less computational resources.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] GRAPH ATTENTION AND INTERACTION NETWORK WITH MULTI-TASK LEARNING FOR FACT VERIFICATION
    Yang, Rui
    Wang, Runze
    Ling, Zhen-Hua
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7838 - 7842
  • [42] Stock Predictor with Graph Laplacian-Based Multi-task Learning
    He, Jiayu
    Tran, Nguyen H.
    Khushi, Matloob
    COMPUTATIONAL SCIENCE - ICCS 2022, PT I, 2022, : 541 - 553
  • [43] Recommendation Algorithm for Multi-Task Learning with Directed Graph Convolutional Networks
    Yin, Lifeng
    Lu, Jianzheng
    Zheng, Guanghai
    Chen, Huayue
    Deng, Wu
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [44] A Privacy-Preserving Multi-Task Framework for Knowledge Graph Enhanced Recommendation
    Yu, Bin
    Zhou, Chenyu
    Zhang, Chen
    Wang, Guodong
    Fan, Yiming
    IEEE ACCESS, 2020, 8 : 115717 - 115727
  • [45] An ultrasound standard plane detection model of fetal head based on multi-task learning and hybrid knowledge graph
    Zhao, Lei
    Li, Kenli
    Pu, Bin
    Chen, Jianguo
    Li, Shengli
    Liao, Xiangke
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 135 : 234 - 243
  • [46] Multi-Task Deep Learning Model with an Attention Mechanism for Ship Accident Sentence Prediction
    Park, Ho-Min
    Kim, Jae-Hoon
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [47] Boosted multi-task learning
    Olivier Chapelle
    Pannagadatta Shivaswamy
    Srinivas Vadrevu
    Kilian Weinberger
    Ya Zhang
    Belle Tseng
    Machine Learning, 2011, 85 : 149 - 173
  • [48] An overview of multi-task learning
    Zhang, Yu
    Yang, Qiang
    NATIONAL SCIENCE REVIEW, 2018, 5 (01) : 30 - 43
  • [49] An effective multi-task learning framework for drug repurposing based on graph representation learning
    Ye, Shengwei
    Zhao, Weizhong
    Shen, Xianjun
    Jiang, Xingpeng
    He, Tingting
    METHODS, 2023, 218 : 48 - 56
  • [50] MuGIL: A Multi-Graph Interaction Learning Network for Multi-Task Traffic Prediction
    Liu, Shuai
    Yu, Haiyang
    Jiang, Han
    Ma, Zhenliang
    Cui, Zhiyong
    Ren, Yilong
    KNOWLEDGE-BASED SYSTEMS, 2024, 306