High genetic diversity yet weak population genetic structure in European common terns

被引:1
作者
Loncar, Veronika [1 ]
Kralj, Jelena [2 ]
Stronen, Astrid Vik [3 ,4 ]
Grgurevic, Marija [5 ]
Pavlinec, Zeljko [6 ]
Jurinovic, Luka [7 ]
Svetlicic, Ida [1 ]
Buzan, Elena [8 ,9 ]
Piro, Simon [10 ]
Herrmann, Christof [11 ]
Skornik, Iztok [12 ]
Tome, Davorin [13 ]
Kovacs, Gyula [14 ]
Preiszner, Balint [15 ]
Szinai, Peter [16 ,17 ]
Volponi, Stefano [18 ]
Stipoljev, Suncica [19 ]
Galov, Ana [1 ]
机构
[1] Univ Zagreb, Fac Sci, Zagreb, Croatia
[2] Croatian Acad Sci & Arts, Zagreb, Croatia
[3] Univ Ljubljana, Biotech Fac, Ljubljana, Slovenia
[4] Aalborg Univ, Dept Chem & Biosci, Aalborg, Denmark
[5] Kite Pharm, Hoofddorp, Netherlands
[6] Aquarium Pula, Pula, Croatia
[7] Croatian Vet Inst, Poultry Ctr, Zagreb, Croatia
[8] Univ Primorska, Fac Math Nat Sci & Informat Technol, Koper, Slovenia
[9] Fac Environm Protect, Velenje, Slovenia
[10] Univ Greifswald, Zool Inst & Museum, AG Vogelwarte, Greifswald, Germany
[11] Hiddensee Bird Ringing Scheme, Agcy Environm Nat Conservat & Geol Mecklenburg Vo, Gustrow, Germany
[12] Soline Pridelava Soli Doo, Secovlje Salina Nat Pk, Portoroz, Slovenia
[13] Natl Inst Biol, Ljubljana, Slovenia
[14] BirdLife Hungary South Balaton Local Grp, Balatonlelle, Hungary
[15] HUN REN Balaton Limnol Res Inst, Tihany, Hungary
[16] Balaton Felvidek Natl Pk Directorate, Csopak, Hungary
[17] Bird Ringing & Migrat Study Grp BirdLife Hungary, Budapest, Hungary
[18] Italian Inst Environm Protect & Res, Ozzano Dellemilia, Italy
[19] Rudjer Boskovic Inst, Div Mol Biol, Lab Evolutionary Genet, Zagreb, Croatia
关键词
Genetic diversity; Population genetic structure; Microsatellite; Mitochondrial DNA; STERNA-HIRUNDO; SOFTWARE; NUMBER; REGION; DIFFERENTIATION; CONSEQUENCES; RECRUITMENT; PHILOPATRY; DISPERSAL; INFERENCE;
D O I
10.1038/s41598-024-80614-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The common tern (Sterna hirundo) is a migratory seabird experiencing a decline in breeding pairs across several European populations due to various threats, including habitat destruction and human disturbance. This study investigates the population genetic structure and diversity of common terns sampled extensively across three European areas-Northern, Southern Inland and Southern Marine-during the breeding seasons, using 18 microsatellite markers and a mitochondrial DNA control region fragment. High genetic diversity was found in both types of markers, with the Southern Marine group showing the lowest overall diversity, although signals of possible population bottlenecks were detected in all groups. Various analyses indicated that population genetic structure was weak or absent, suggesting high gene flow among groups. The low genetic differentiation is likely influenced by distinct migration patterns, particularly between Southern Inland and Marine groups. Our results suggest that geographical distance between breeding colonies had minimal effect on population genetic structure. Further studies with tracking devices are needed to clarify how migration dynamics impacts genetic structure in common terns, while conservation efforts should focus on securing multiple breeding sites and currently unoccupied areas to increase options for habitat selection, supporting the species' genetic diversity and long-term resilience.
引用
收藏
页数:12
相关论文
共 70 条
[1]  
Austin O. L., 1949, Bird-Banding Boston, V20, P1, DOI 10.2307/4510062
[2]   Phylogeography of colonially nesting seabirds, with special reference to global matrilineal patterns in the sooty tern (Sterna fuscata) [J].
Avise, JC ;
Nelson, WS ;
Bowen, BW ;
Walker, D .
MOLECULAR ECOLOGY, 2000, 9 (11) :1783-1792
[3]   Population sex ratio shift from fledging to recruitment:: consequences for demography in a philopatric seabird [J].
Becker, Peter H. ;
Ezard, Thomas H. G. ;
Ludwigs, Jan-Dieter ;
Sauer-Guerth, Hedwig ;
Wink, Michael .
OIKOS, 2008, 117 (01) :60-68
[4]  
Becker Peter H., 2004, BWP Update, V6, P91
[5]   Common Terns on the East Atlantic Flyway: temporal-spatial distribution during the non-breeding period [J].
Becker, Peter H. ;
Schmaljohann, Heiko ;
Riechert, Juliane ;
Wagenknecht, Goetz ;
Zajkova, Zuzana ;
Gonzalez-Solis, Jacob .
JOURNAL OF ORNITHOLOGY, 2016, 157 (04) :927-940
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]  
BirdLife International, 2021, The IUCN Red List of Threatened Species, Ve, DOI [10.2305/IUCN.UK.2021-3.RLTS.T22694623A166283664.en, DOI 10.2305/IUCN.UK.2021-3.RLTS.T22694623A166283664.EN]
[8]  
BirdLife International, 2019, The IUCN Red List of Threatened Species, DOI [10.2305/IUCN.UK.2019-3.RLTS.T22694623A155537726.en, DOI 10.2305/IUCN.UK.2019-3.RLTS.T22694623A155537726.EN]
[9]   Migratory routes and wintering locations of declining inland North American Common Terns [J].
Bracey, Annie ;
Lisovski, Simeon ;
Moore, David ;
Mckellar, Ann ;
Craig, Elizabeth ;
Matteson, Sumner ;
Strand, Fred ;
Costa, Jeffrey ;
Pekarik, Cynthia ;
Curtis, Paul ;
Niemi, Gerald ;
Cuthbert, Francesca .
AUK, 2018, 135 (03) :385-399
[10]  
Clement M., 2002, Parallel Distrib. Process. Symp Int. Proc., V2, P184, DOI [DOI 10.1109/IPDPS.2002.1016585, 10.1109/ipdps.2002.1016585]