Chromosome-level assembly of Prunus serrula Franch genome

被引:0
作者
Zuo, Hao [1 ,2 ,3 ,4 ]
Liu, Shengjun [2 ,3 ]
Tan, Lei [2 ,3 ]
Huang, Yue [2 ,3 ]
Li, Yuanrong [1 ,4 ]
Gesang, Pingcuo [1 ,4 ]
Hong, Ying [1 ,4 ]
Deng, Xiuxin [2 ,3 ]
Wang, Xia [2 ,3 ]
Xu, Qiang [2 ,3 ]
Jiao, Wen-Biao [2 ,3 ]
Zeng, Xiuli [1 ,4 ]
机构
[1] Minist Agr & Rural Affairs, Qinghai Tibet Plateau Fruit Trees Sci Observat Tes, Lhasa 850032, Xizang, Peoples R China
[2] Natl Key Lab Germplasm Innovat & Utilizat Hort Cro, Wuhan 430070, Hubei, Peoples R China
[3] Hubei Hongshan Lab, Wuhan 430070, Peoples R China
[4] Tibet Acad Agr & Anim Husb Sci, Inst Vegetables, Lhasa 850002, Xizang, Peoples R China
基金
芬兰科学院;
关键词
SWEET; TOOL;
D O I
10.1038/s41597-025-04810-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
P. serrula is widely distributed in Yunnan, Xizang, and Sichuan, and usually grows at high altitudes between 2,600 and 3,900 meters above sea level. In this study, we obtained a high-quality chromosome-level assembly genome of P. serrula using Illumina sequencing, Oxford Nanopore ultra-long sequencing, and Hi-C technology. The genome was 284.5 Mb in length, with a scaffold N50 of 32.4 Mb and 91.9% of the assembly anchored onto 8 pseudochromosomes. BUSCO completeness value of 98.5% demonstrated a high completed genome, and a total of 35,151 protein-coding genes and 47,340 transcripts were annotated. Overall, this genome delivers valuable genetic resources for further phylogenomic studies and provides insights into the genetic architectures underlying high-altitude adaptation.
引用
收藏
页数:5
相关论文
共 45 条
  • [11] RepeatModeler2 for automated genomic discovery of transposable element families
    Flynn, Jullien M.
    Hubley, Robert
    Goubert, Clement
    Rosen, Jeb
    Clark, Andrew G.
    Feschotte, Cedric
    Smit, Arian F.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (17) : 9451 - 9457
  • [12] Sweet Cherry Cultivar Identification by High-Resolution-Melting (HRM) Analysis Using Gene-Based SNP Markers
    Ganopoulos, Ioannis
    Tsaballa, Aphrodite
    Xanthopoulou, Aliki
    Madesis, Panagiotis
    Tsaftaris, Athanasios
    [J]. PLANT MOLECULAR BIOLOGY REPORTER, 2013, 31 (03) : 763 - 768
  • [13] Grabherr Manfred G., 2011, Full-length transcriptome assembly from RNA-Seq data without a reference genome, V29, P644, DOI DOI 10.1038/NBT.1883
  • [14] Engineering a software tool for gene structure prediction in higher organisms
    Gremme, G
    Brendel, V
    Sparks, ME
    Kurtz, S
    [J]. INFORMATION AND SOFTWARE TECHNOLOGY, 2005, 47 (15) : 965 - 978
  • [15] Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies
    Haas, BJ
    Delcher, AL
    Mount, SM
    Wortman, JR
    Smith, RK
    Hannick, LI
    Maiti, R
    Ronning, CM
    Rusch, DB
    Town, CD
    Salzberg, SL
    White, O
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (19) : 5654 - 5666
  • [16] Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments
    Haas, Brian J.
    Salzberg, Steven L.
    Zhu, Wei
    Pertea, Mihaela
    Allen, Jonathan E.
    Orvis, Joshua
    White, Owen
    Buell, C. Robin
    Wortman, Jennifer R.
    [J]. GENOME BIOLOGY, 2008, 9 (01)
  • [17] NextPolish: a fast and efficient genome polishing tool for long-read assembly
    Hu, Jiang
    Fan, Junpeng
    Sun, Zongyi
    Liu, Shanlin
    [J]. BIOINFORMATICS, 2020, 36 (07) : 2253 - 2255
  • [18] Hummer K.E., 2009, Rosaceae: Taxonomy, Economic Importance, Genomics. Plant Genetics and Genomics: Crops and Models
  • [19] identifiers, 2024, NCBI GenBank
  • [20] identifiers, 2024, NCBI Sequence Read Archive