Restoration of X-ray phase-contrast imaging based on generative adversarial networks

被引:0
作者
Zeng, Jiacheng [1 ]
Huang, Jianheng [1 ]
Zeng, Jiancheng [2 ]
Li, Jiaqi [1 ]
Lei, Yaohu [1 ]
Liu, Xin [1 ]
Ye, Huacong [3 ]
Du, Yang [4 ]
Zhang, Chenggong [4 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen, Peoples R China
[2] Guangdong Polytech Normal Univ, Sch Data Sci & Engn, Guangzhou, Peoples R China
[3] Guangzhou Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[4] Inst Adv Sci Facil, Shenzhen, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
X-ray phase-contrast imaging; Generative adversarial network; Stripe image restoration; Peak Signal-to-Noise Ratio; Structural Similarity; TOMOGRAPHY; SCATTERING;
D O I
10.1038/s41598-024-77937-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For light-element materials, X-ray phase contrast imaging provides better contrast compared to absorption imaging. While the Fourier transform method has a shorter imaging time, it typically results in lower image quality; in contrast, the phase-shifting method offers higher image quality but is more time-consuming and involves a higher radiation dose. To rapidly reconstruct low-dose X-ray phase contrast images, this study developed a model based on Generative Adversarial Networks (GAN), incorporating custom layers and self-attention mechanisms to recover high-quality phase contrast images. We generated a simulated dataset using Kaggle's X-ray data to train the GAN, and in simulated experiments, we achieved significant improvements in Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). To further validate our method, we applied it to fringe images acquired from three phase contrast systems: a single-grating phase contrast system, a Talbot-Lau system, and a cascaded grating system. The current results demonstrate that our method successfully restored high-quality phase contrast images from fringe images collected in experimental settings, though it should be noted that these results were achieved using relatively simple sample configurations.
引用
收藏
页数:14
相关论文
共 28 条
[21]  
Radford A, 2016, Arxiv, DOI arXiv:1511.06434
[22]  
Rodrigo B. Madushani, Fracture Multi-Region X-ray Data
[23]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[24]   Improved Reconstruction Technique for Moire Imaging Using an X-Ray Phase-Contrast Talbot-Lau Interferometer [J].
Seifert, Maria ;
Gallersdoerfer, Michael ;
Ludwig, Veronika ;
Schuster, Max ;
Horn, Florian ;
Pelzer, Georg ;
Rieger, Jens ;
Michel, Thilo ;
Anton, Gisela .
JOURNAL OF IMAGING, 2018, 4 (05)
[25]   The First Analysis and Clinical Evaluation of Native Breast Tissue Using Differential Phase-Contrast Mammography [J].
Stampanoni, Marco ;
Wang, Zhentian ;
Thuering, Thomas ;
David, Christian ;
Roessl, Ewald ;
Trippel, Mafalda ;
Kubik-Huch, Rahel A. ;
Singer, Gad ;
Hohl, Michael K. ;
Hauser, Nik .
INVESTIGATIVE RADIOLOGY, 2011, 46 (12) :801-806
[26]   Low-dose and fast grating-based x-ray phase-contrast imaging [J].
Wali, Faiz ;
Wang, Shenghao ;
Han, Huajie ;
Gao, Kun ;
Wu, Zhao ;
Zhu, Peiping ;
Tian, Yangchao .
OPTICAL ENGINEERING, 2017, 56 (09)
[27]   Spatial harmonic imaging of X-ray scattering initial results [J].
Wen, Han ;
Bennett, Eric E. ;
Hegedus, Monica A. ;
Carroll, Stefanie C. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (08) :997-1002
[28]   Phase-contrast imaging using polychromatic hard X-rays [J].
Wilkins, SW ;
Gureyev, TE ;
Gao, D ;
Pogany, A ;
Stevenson, AW .
NATURE, 1996, 384 (6607) :335-338