Panoramic radiographic features for machine learning based detection of mandibular third molar root and inferior alveolar canal contact

被引:0
作者
Ulusoy, A. Canberk [1 ]
Toprak, Tugce [2 ]
Selver, M. Alper [3 ,4 ]
Gueneri, Pelin [1 ]
Ilhan, Betuel [1 ,5 ]
机构
[1] Ege Univ, Sch Dent, Dept Oral & Maxillofacial Radiol, Bornova, Turkiye
[2] Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, Izmir Vocat Sch IMYO, Izmir, Turkiye
[3] Dokuz Eylul Univ, Elect & Elect Engn Dept, Izmir, Turkiye
[4] Dokuz Eylul Univ, Izmir Hlth Technol Dev & Accelerator BioIzmir, Izmir, Turkiye
[5] Ege Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, Izmir, Turkiye
关键词
Machine learning; deep learning; CNN; ANN; mandibuler third molar; inferior alveolar canal; panoramic radiography; CBCT; ARTIFICIAL NEURAL-NETWORK; DIFFERENTIAL-DIAGNOSIS; NERVE INJURY; EXTRACTION; REGRESSION; PROXIMITY; SELECTION; TUMORS; SIGNS;
D O I
10.1038/s41598-024-82915-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study uses machine learning (ML) to elucidate the contact relationship between the mandibular third molar (M3M) and the inferior alveolar canal (IAC), leading to three major contributions; (1) The first publicly accessible PR image dataset with semantic annotations for 1,478 IACs and M3Ms from 1,010 patients is introduced, which includes challenging cases, such as false positive contacts, with CBCT images as the gold standard, (2) Established radiological indicators for M3M-IAC contact were extracted as features using digital image processing, and these features were used as inputs for various ML methods. Eligibility was assessed through statistical analysis and radiologists evaluations. Clinical feedback from radiologists on these features provides insights for future improvements. (3) ANNs, two custom CNNs, seven established DL models, and their combinations were used for automatic M3M-IAC contact determination with extracted features, semantic annotations, and ROIs. The ANN configuration surpassed both radiologists and DL models in specificity (82%), F1 score (92%), and accuracy (85%), while maintaining a comparable sensitivity (86%) to the DL models. This indicates that ANNs can effectively predict M3M-IAC contact relations and are particularly effective at identifying cases with no contact relation between M3M and IAC compared to other ML methods. Future work should focus on developing automated segmentation algorithms for M3M and IAC on PRs, to identify relevant anatomical structures, thereby improving clinical usability. The dataset, feature extraction, and ML codes are available through the CONTACT grand challenge.
引用
收藏
页数:14
相关论文
共 45 条
[1]   Correlation of panoramic high-risk markers with the cone beam CT findings in the preoperative assessment of the mandibular third molars [J].
Al Ali, Shaima ;
Jaber, Mohamed .
JOURNAL OF DENTAL SCIENCES, 2020, 15 (01) :75-83
[2]   Predictive factors of difficulty in lower third molar extraction: A prospective cohort study [J].
Alvira-Gonzalez, Joaquin ;
Figueiredo, Rui ;
Valmaseda-Castellon, Eduard ;
Quesada-Gomez, Carmen ;
Gay-Escoda, Cosme .
MEDICINA ORAL PATOLOGIA ORAL Y CIRUGIA BUCAL, 2017, 22 (01) :E108-E114
[3]   Vertical eruption patterns of impacted mandibular third molars after the mesialization of second molars using miniscrews [J].
Baik, Un-Bong ;
Kook, Yoon-Ah ;
Bayome, Mohamed ;
Park, Je-Uk ;
Park, Jae Hyun .
ANGLE ORTHODONTIST, 2016, 86 (04) :565-570
[4]   PREDICTIVE ABILITY OF REGRESSION-MODELS .2. SELECTION OF THE BEST PREDICTIVE PLS MODEL [J].
BARONI, M ;
CLEMENTI, S ;
CRUCIANI, G ;
COSTANTINO, G ;
RIGANELLI, D ;
OBERRAUCH, E .
JOURNAL OF CHEMOMETRICS, 1992, 6 (06) :347-356
[5]   A Fused Deep Learning Architecture for the Detection of the Relationship between the Mandibular Third Molar and the Mandibular Canal [J].
Buyuk, Cansu ;
Akkaya, Nurullah ;
Arsan, Belde ;
Unsal, Gurkan ;
Aksoy, Secil ;
Orhan, Kaan .
DIAGNOSTICS, 2022, 12 (08)
[6]   Comparative Analysis of Logistic Regression, Support Vector Machine and Artificial Neural Network for the Differential Diagnosis of Benign and Malignant Solid Breast Tumors by the Use of Three-Dimensional Power Doppler Imaging [J].
Chen, Shou-Tung ;
Hsiao, Yi-Hsuan ;
Huang, Yu-Len ;
Kuo, Shou-Jen ;
Tseng, Hsin-Shun ;
Wu, Hwa-Koon ;
Chen, Dar-Ren .
KOREAN JOURNAL OF RADIOLOGY, 2009, 10 (05) :464-471
[7]   Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography [J].
Choi, Eunhye ;
Lee, Soohong ;
Jeong, Eunjae ;
Shin, Seokwon ;
Park, Hyunwoo ;
Youm, Sekyoung ;
Son, Youngdoo ;
Pang, KangMi .
SCIENTIFIC REPORTS, 2022, 12 (01)
[8]  
DeVellis R. F., 2005, Inter-Rater Reliability in Encyclopedia of Social Measurement, P317
[9]   Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools [J].
Diaz, Oliver ;
Kushibar, Kaisar ;
Osuala, Richard ;
Linardos, Akis ;
Garrucho, Lidia ;
Igual, Laura ;
Radeva, Petia ;
Prior, Fred ;
Gkontra, Polyxeni ;
Lekadir, Karim .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :25-37
[10]   Why is the winner the best? [J].
Eisenmann, M. ;
Reinke, A. ;
Weru, V. ;
Tizabi, M. D. ;
Isensee, F. ;
Adler, T. J. ;
Ali, S. ;
Andrearczyk, V. ;
Aubreville, M. ;
Baid, U. ;
Bakas, S. ;
Balu, N. ;
Bano, S. ;
Bernal, J. ;
Bodenstedt, S. ;
Casella, A. ;
Cheplygina, V. ;
Daum, M. ;
de Bruijne, M. ;
Depeursinge, A. ;
Dorent, R. ;
Egger, J. ;
Ellis, D. G. ;
Engelhardt, S. ;
Ganz, M. ;
Ghatwary, N. ;
Girard, G. ;
Godau, P. ;
Gupta, A. ;
Hansen, L. ;
Harada, K. ;
Heinrich, M. ;
Heller, N. ;
Hering, A. ;
Huaulme, A. ;
Jannin, P. ;
Kavur, A. E. ;
Kodym, O. ;
Kozubek, M. ;
Li, J. ;
Li, H. ;
Ma, J. ;
Martin-Isla, C. ;
Menze, B. ;
Noble, A. ;
Oreiller, V. ;
Padoy, N. ;
Pati, S. ;
Payette, K. ;
Raedsch, T. .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :19955-19966