Adversarial robustness improvement for X-ray bone segmentation using synthetic data created from computed tomography scans

被引:0
作者
Fok, Wai Yan Ryana [1 ,2 ]
Fieselmann, Andreas [2 ]
Huemmer, Christian [2 ]
Biniazan, Ramyar [2 ]
Beister, Marcel [2 ]
Geiger, Bernhard [2 ]
Kappler, Steffen [2 ]
Saalfeld, Sylvia [1 ,3 ]
机构
[1] Otto von Guericke Univ, Fac Comp Sci, D-39106 Magdeburg, Germany
[2] Siemens Healthineers AG, X ray Prod, D-91301 Forchheim, Germany
[3] Univ Hosp Schleswig Holstein, Inst Med Informat & Stat, Campus Kiel, D-24105 Kiel, Germany
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Robustness; Adversarial Training; Synthetic X-ray; Computed Tomography; Segmentation; GENERATION;
D O I
10.1038/s41598-024-73363-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning-based image analysis offers great potential in clinical practice. However, it faces mainly two challenges: scarcity of large-scale annotated clinical data for training and susceptibility to adversarial data in inference. As an example, an artificial intelligence (AI) system could check patient positioning, by segmenting and evaluating relative positions of anatomical structures in medical images. Nevertheless, data to train such AI system might be highly imbalanced with mostly well-positioned images being available. Thus, we propose the use of synthetic X-ray images and annotation masks forward projected from 3D photon-counting CT volumes to create realistic non-optimally positioned X-ray images for training. An open-source model (TotalSegmentator) was used to annotate the clavicles in 3D CT volumes. We evaluated model robustness with respect to the internal (simulated) patient rotation alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} on real-data-trained models and real&synthetic-data-trained models. Our results showed that real&synthetic- data-trained models have Dice score percentage improvements of 3% to 15% across different alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} groups compared to the real-data-trained model. Therefore, we demonstrated that synthetic data could be supplementary used to train and enrich heavily underrepresented conditions to increase model robustness.
引用
收藏
页数:11
相关论文
共 46 条
  • [1] Athalye A, 2018, PR MACH LEARN RES, V80
  • [2] Automated Detection and Quantification of COVID-19 Airspace Disease on Chest Radiographs A Novel Approach Achieving Expert Radiologist-Level Performance Using a Deep Convolutional Neural Network Trained on Digital Reconstructed Radiographs From Computed Tomography-Derived Ground Truth
    Barbosa Jr, Eduardo J. Mortani
    Gefter, Warren B.
    Ghesu, Florin C.
    Liu, Siqi
    Mailhe, Boris
    Mansoor, Awais
    Grbic, Sasa
    Vogt, Sebastian
    [J]. INVESTIGATIVE RADIOLOGY, 2021, 56 (08) : 471 - 479
  • [3] The importance of proper radiographic positioning and technique
    Berlin, L
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 1996, 166 (04) : 769 - 771
  • [4] Biggio Battista, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8190, P387, DOI 10.1007/978-3-642-40994-3_25
  • [5] Cai QZ, 2018, Arxiv, DOI arXiv:1805.04807
  • [6] Synthetic data in machine learning for medicine and healthcare
    Chen, Richard J.
    Lu, Ming Y.
    Chen, Tiffany Y.
    Williamson, Drew F. K.
    Mahmood, Faisal
    [J]. NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) : 493 - 497
  • [7] Cohen JP, 2022, PR MACH LEARN RES, V172, P231
  • [8] End-to-End Adversarial Retinal Image Synthesis
    Costa, Pedro
    Galdran, Adrian
    Meyer, Maria Ines
    Niemeijer, Meindert
    Abramoff, Michael
    Mendonca, Ana Maria
    Campilho, Aurelio
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) : 781 - 791
  • [9] Adversarial attacks on medical machine learning
    Finlayson, Samuel G.
    Bowers, John D.
    Ito, Joichi
    Zittrain, Jonathan L.
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. SCIENCE, 2019, 363 (6433) : 1287 - 1289
  • [10] Simulation and Synthesis in Medical Imaging
    Frangi, Alejandro F.
    Tsaftaris, Sotirios A.
    Prince, Jerry L.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) : 673 - 679