Granularity for Mixed-Integer Polynomial Optimization Problems

被引:0
|
作者
Eggen, Carl [1 ]
Stein, Oliver [2 ]
Volkwein, Stefan [1 ]
机构
[1] Univ Konstanz, Dept Math & Stat, Universitatsstr 10, D-78464 Constance, Germany
[2] Karlsruhe Inst Technol KIT, Inst Operat Res, Blucherstr 17, D-76185 Karlsruhe, Germany
关键词
Mixed-integer nonlinear programming; Granularity; Rounding; Polynomial optimization; Semidefinite programming; ALGORITHM;
D O I
10.1007/s10957-025-02631-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Finding good feasible points is crucial in mixed-integer programming. For this purpose we combine a sufficient condition for consistency, called granularity, with the moment-/sum-of-squares-hierarchy from polynomial optimization. If the mixed-integer problem is granular, we obtain feasible points by solving continuous polynomial problems and rounding their optimal points. The moment-/sum-of-squares-hierarchy is hereby used to solve those continuous polynomial problems, which generalizes known methods from the literature. Numerical examples from the MINLPLib illustrate our approach.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Global optimization of mixed-integer nonlinear programs with SCIP 8
    Bestuzheva, Ksenia
    Chmiela, Antonia
    Mueller, Benjamin
    Serrano, Felipe
    Vigerske, Stefan
    Wegscheider, Fabian
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (02) : 287 - 310
  • [32] Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems
    Castro, Pedro M.
    Grossmann, Ignacio E.
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (2-3) : 277 - 306
  • [33] A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology
    Penas, David R.
    Henriques, David
    Gonzalez, Patricia
    Doallo, Ramon
    Saez-Rodriguez, Julio
    Banga, Julio R.
    PLOS ONE, 2017, 12 (08):
  • [34] Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems
    Pedro M. Castro
    Journal of Global Optimization, 2016, 64 : 765 - 784
  • [35] Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems
    Castro, Pedro M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (04) : 765 - 784
  • [36] Exact quadratic convex reformulations of mixed-integer quadratically constrained problems
    Billionnet, Alain
    Elloumi, Sourour
    Lambert, Amelie
    MATHEMATICAL PROGRAMMING, 2016, 158 (1-2) : 235 - 266
  • [37] Learning a Classification of Mixed-Integer Quadratic Programming Problems
    Bonami, Pierre
    Lodi, Andrea
    Zarpellon, Giulia
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2018, 2018, 10848 : 595 - 604
  • [38] A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization
    Eichfelder, Gabriele
    Stein, Oliver
    Warnow, Leo
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (02) : 1736 - 1766
  • [39] Outer Approximation for Mixed-Integer Nonlinear Robust Optimization
    Kuchlbauer, Martina
    Liers, Frauke
    Stingl, Michael
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) : 1056 - 1086
  • [40] A test instance generator for multiobjective mixed-integer optimization
    Eichfelder, Gabriele
    Gerlach, Tobias
    Warnow, Leo
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2024, 100 (01) : 385 - 410