Predicting the seasonal dynamics of Dalbulus maidis (Hemiptera: Cicadellidae) in corn using artificial neural networks

被引:0
作者
do Carmo, Daiane das Gracas [1 ]
Paes, Jhersyka da Silva [1 ]
Santos, Abraao Almeida [2 ]
dos Santos, Juliana Lopes [3 ]
Picanco Filho, Marcelo Coutinho [4 ]
Soares, Juliana Magalhaes [4 ]
Sarmento, Renato de Almeida [4 ]
Picanco, Marcelo Coutinho [1 ,4 ]
机构
[1] Univ Fed Vicosa, Dept Plant Sci, Vicosa, MG, Brazil
[2] Univ Laval, Fac Sci Agr & Alimentat, Dept Phytol, Quebec City, PQ, Canada
[3] Univ Fed Tocantins, Dept Plant Prod, Gurupi, Tocantins, Brazil
[4] Univ Fed Vicosa, Dept Entomol, Vicosa, MG, Brazil
关键词
Corn leafhopper; Machine learning; Population ecology; Climate; Pest management; Maize; MAIZE; POPULATIONS; LEPIDOPTERA; SURVIVAL;
D O I
10.1007/s13744-024-01212-y
中图分类号
Q96 [昆虫学];
学科分类号
摘要
This study addresses the challenge of predicting Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) density in cornfields by developing an artificial neural network (ANN). Over two years, we collected data on meteorological variables (atmospheric pressure, air temperature, dew point, rainfall, relative humidity, solar irradiance, and wind speed), plant age, and density of D. maidis in cornfields located in two Brazilian biomes (Atlantic Forest and Brazilian Tropical Savannah). Out of 1056 ANNs tested, the neural network featuring a 30-day time lag, six neurons, logistic activation, and resilient propagation demonstrated the lowest root mean squared error (0.057) and a high correlation (0.919) with observed D. maidis densities. This ANN exhibited an goodness of fit in low-density (Atlantic Forest) and high-density (Brazilian Tropical Savannah) scenarios for D. maidis. Critical factors influencing D. maidis seasonal dynamics, including corn plant age, rainfall, average air temperature, and relative humidity, were identified. This study highlights the potential of the ANN as a promising tool for precise predictions of pest seasonal dynamics, positioning it as a valuable asset for integrated pest management programs targeting D. maidis.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Feedforward Neural Networks with a Hidden Layer Regularization Method [J].
Alemu, Habtamu Zegeye ;
Wu, Wei ;
Zhao, Junhong .
SYMMETRY-BASEL, 2018, 10 (10)
[2]   Predictive modelling of yellow stem borer population in rice using light trap: A comparative study of MLP and LSTM networks [J].
Bapatla, Kiran Gandhi ;
Gadratagi, Basana Gowda ;
Patil, Naveenkumar B. ;
Govindharaj, Guru-Pirasanna Pandi ;
Thalluri, Lakshmi Narayana ;
Panda, Bipin Bihari .
ANNALS OF APPLIED BIOLOGY, 2024, 185 (02) :255-263
[3]   Eight principles of integrated pest management [J].
Barzman, Marco ;
Barberi, Paolo ;
Birch, A. Nicholas E. ;
Boonekamp, Piet ;
Dachbrodt-Saaydeh, Silke ;
Graf, Benno ;
Hommel, Bernd ;
Jensen, Jens Erik ;
Kiss, Jozsef ;
Kudsk, Per ;
Lamichhane, Jay Ram ;
Messean, Antoine ;
Moonen, Anna-Camilla ;
Ratnadass, Alain ;
Ricci, Pierre ;
Sarah, Jean-Louis ;
Sattin, Maurizio .
AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2015, 35 (04) :1199-1215
[4]   NeuralNetTools: Visualization and Analysis Tools for Neural Networks [J].
Beck, Marcus W. .
JOURNAL OF STATISTICAL SOFTWARE, 2018, 85 (11)
[5]  
Bergmeir C, 2012, J STAT SOFTW, V46, P1
[6]  
Bilbao Imanol, 2017, 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS). Proceedings, P173, DOI 10.1109/INTELCIS.2017.8260032
[7]   Effects of environmental heterogeneity on Lepidoptera and Hymenoptera populations in Eucalyptus plantations in Brazil [J].
Braganca, MAL ;
Zanuncio, JC ;
Picanco, M ;
Laranjeiro, AJ .
FOREST ECOLOGY AND MANAGEMENT, 1998, 103 (2-3) :287-292
[8]   Abundance of Dalbulus maidis and impact of maize rayado fino disease on different genotypes in field conditions in Santa Catarina, Brazil [J].
Canale, Maria Cristina ;
Nesi, Cristiano Nunes ;
Castilhos, Rodolfo Vargas .
TROPICAL PLANT PATHOLOGY, 2023, 48 (06) :675-684
[9]   Instar Determination of Blaptostethus pallescens (Hemiptera: Anthocoridae) Using Artificial Neural Networks [J].
Carmo, Daiane das Gracas ;
Farias, Elizeu de Sa ;
Costa, Thiago Leandro ;
Queiroz, Elenir Aparecida ;
Nascimento, Moyses ;
Picanco, Marcelo Coutinho .
ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA, 2020, 113 (01) :50-54
[10]  
Core RT., 2022, R: A Language and Environment for Statistical Computing