Movable cones of complete intersections of multidegree one on products of projective spaces

被引:1
作者
Hoff, Michael
Stenger, Isabel [1 ]
Yanez, Jose Ignacio [2 ]
机构
[1] Leibniz Univ Hannover, Inst Algebra Geometry, Welfengarten 1, D-30167 Hannover, Germany
[2] UCLA, Math Dept, Box 951555, Los Angeles, CA 90095 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
CALABI-YAU MANIFOLDS; AUTOMORPHISM-GROUPS; CONJECTURE;
D O I
10.1007/s00029-024-01005-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Calabi-Yau manifolds which are complete intersections of hypersurfaces of multidegree 1 in an m-fold product of n-dimensional projective spaces. Using the theory of Coxeter groups, we show that the birational automorphism group of such a Calabi-Yau manifold X is infinite and a free product of copies of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}. Moreover, we give an explicit description of the boundary of the movable cone Mov<overline>(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{\overline{Mov}}}\,}}(X)$$\end{document}. In the end, we consider examples for the general and non-general case and picture the movable cone and the fundamental domain for the action of Bir(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Bir}\,}}(X)$$\end{document}.
引用
收藏
页数:29
相关论文
共 24 条
[21]  
Vinberg E.B., 1971, IZV AKAD NAUK SSSR M, V35, P1072
[22]   Remarks on nef and movable cones of hypersurfaces in Mori dream spaces [J].
Wang, Long .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (11)
[23]  
Wolfram Research Inc., 2021, Mathematica
[24]   Birational automorphism groups and the movable cone theorem for Calabi-Yau complete intersections of products of projective spaces [J].
Yanez, Jose Ignacio .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (10)