Movable cones of complete intersections of multidegree one on products of projective spaces

被引:1
作者
Hoff, Michael
Stenger, Isabel [1 ]
Yanez, Jose Ignacio [2 ]
机构
[1] Leibniz Univ Hannover, Inst Algebra Geometry, Welfengarten 1, D-30167 Hannover, Germany
[2] UCLA, Math Dept, Box 951555, Los Angeles, CA 90095 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
CALABI-YAU MANIFOLDS; AUTOMORPHISM-GROUPS; CONJECTURE;
D O I
10.1007/s00029-024-01005-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Calabi-Yau manifolds which are complete intersections of hypersurfaces of multidegree 1 in an m-fold product of n-dimensional projective spaces. Using the theory of Coxeter groups, we show that the birational automorphism group of such a Calabi-Yau manifold X is infinite and a free product of copies of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}. Moreover, we give an explicit description of the boundary of the movable cone Mov<overline>(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{\overline{Mov}}}\,}}(X)$$\end{document}. In the end, we consider examples for the general and non-general case and picture the movable cone and the fundamental domain for the action of Bir(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Bir}\,}}(X)$$\end{document}.
引用
收藏
页数:29
相关论文
共 24 条
[1]   BIRATIONAL AUTOMORPHISM GROUPS AND THE MOVABLE CONE THEOREM FOR CALABI-YAU MANIFOLDS OF WEHLER TYPE VIA UNIVERSAL COXETER GROUPS [J].
Cantat, Serge ;
Oguiso, Keiji .
AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (04) :1013-1044
[2]   Limit directions for Lorentzian Coxeter systems [J].
Chen, Hao ;
Labbe, Jean-Philippe .
GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (02) :469-498
[3]  
Grayson D.R., 2021, Macaulay2 -A software system for research in algebraic geometry (version 1.18)
[4]  
Hoff M., 2022, Movable cones of complete intersections of multidegree one on products of projective spaces
[5]   On the Numerical Dimension of Calabi-Yau 3-Folds of Picard Number 2 [J].
Hoff, Michael ;
Stenger, Isabel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (12) :10736-10758
[6]   Movable vs Monodromy Nilpotent Cones of Calabi-Yau Manifolds [J].
Hosono, Shinobu ;
Takagi, Hiromichi .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[7]  
Humphreys JamesE., 1990, REFLECTION GROUPS CO, V29
[8]   The movable cone of Calabi-Yau threefolds in ruled Fano manifolds [J].
Ito, Atsushi ;
Lai, Ching-Jui ;
Wang, Sz-Sheng .
JOURNAL OF GEOMETRY AND PHYSICS, 2024, 195
[9]   On the cone of divisors of Calabi-Yau fiber spaces [J].
Kawamata, Y .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (05) :665-687
[10]   Flops connect minimal models [J].
Kawamata, Yujiro .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2008, 44 (02) :419-423