Generalized Berwald Projective Weyl (GBW~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GB\widetilde{W}$$\end{document}) Metrics

被引:0
作者
Nasrin Sadeghzadeh [1 ]
机构
[1] University of Qom,Department of Mathematics
关键词
Douglas metrics; Weyl metrics; metrics; GDW metrics; GB; metrics;
D O I
10.1007/s40010-024-00896-6
中图分类号
学科分类号
摘要
This paper introduces a new quantity in Finsler geometry, called the generalized Berwald projective Weyl (GBW~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GB\widetilde{W}$$\end{document}) metric. The C-projective invariance of these metrics is demonstrated, and it is shown that they constitute a proper subset of the class of generalized Douglas (GDW) metrics. The paper also proves that all GDW metrics with vanishing Landsberg curvature are of R-quadratic type. The class of GDW metrics contains all Finsler metrics of scalar curvature, which provides an extension of the well-known Numata’s theorem.
引用
收藏
页码:487 / 492
页数:5
相关论文
共 7 条