共 1 条
Complex structure on quantum-braided planesComplex structure on quantum-braided planesE. Beggs, S. Majid
被引:0
|作者:
Edwin Beggs
[1
]
Shahn Majid
[2
]
机构:
[1] Bay Campus,Department of Mathematics
[2] Swansea University,School of Mathematical Sciences
[3] Queen Mary University of London,undefined
关键词:
Noncommutative geometry;
Quantum Riemannian geometry;
Primary 58B32;
81R50;
83C65;
46L87;
D O I:
10.1007/s11005-025-01914-3
中图分类号:
学科分类号:
摘要:
We construct a quantum Dolbeault double complex ⊕p,qΩp,q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\oplus _{p,q}\Omega ^{p,q}$$\end{document} on the quantum plane Cq2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {C}}_q^2$$\end{document}. This solves the long-standing problem that the standard differential calculus on the quantum plane is not a ∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$*$$\end{document}-calculus, by embedding it as the holomorphic part of a ∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$*$$\end{document}-calculus. We show in general that any Nichols–Woronowicz algebra or braided plane B+(V)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_+(V)$$\end{document}, where V is an object in an Abelian C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {C}}$$\end{document}-linear braided bar category of real type, is a quantum complex space in this sense of a factorisable Dolbeault double complex. We combine the Chern construction on Ω1,0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega ^{1,0}$$\end{document} in such a Dolbeault complex for an algebra A with its conjugate to construct a canonical metric-compatible connection on Ω1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega ^1$$\end{document} associated with a class of quantum metrics, and apply this to the quantum plane. We also apply this to finite groups G with Cayley graph generators split into two halves related by inversion, constructing such a Dolbeault complex Ω(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega (G)$$\end{document} in this case. This construction recovers the quantum Levi-Civita connection for any edge-symmetric metric on the integer lattice with Ω(Z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega ({\mathbb {Z}})$$\end{document}, now viewed as a quantum complex structure on Z\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {Z}}$$\end{document}. We also show how to build natural quantum metrics on Ω1,0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega ^{1,0}$$\end{document} and Ω0,1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega ^{0,1}$$\end{document} separately, where the inner product in the case of the quantum plane, in order to descend to ⊗A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\otimes _A$$\end{document}, is taken with values in an A-bimodule.
引用
收藏
相关论文