Complex structure on quantum-braided planesComplex structure on quantum-braided planesE. Beggs, S. Majid

被引:0
|
作者
Edwin Beggs [1 ]
Shahn Majid [2 ]
机构
[1] Bay Campus,Department of Mathematics
[2] Swansea University,School of Mathematical Sciences
[3] Queen Mary University of London,undefined
关键词
Noncommutative geometry; Quantum Riemannian geometry; Primary 58B32; 81R50; 83C65; 46L87;
D O I
10.1007/s11005-025-01914-3
中图分类号
学科分类号
摘要
We construct a quantum Dolbeault double complex ⊕p,qΩp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\oplus _{p,q}\Omega ^{p,q}$$\end{document} on the quantum plane Cq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}_q^2$$\end{document}. This solves the long-standing problem that the standard differential calculus on the quantum plane is not a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-calculus, by embedding it as the holomorphic part of a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-calculus. We show in general that any Nichols–Woronowicz algebra or braided plane B+(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_+(V)$$\end{document}, where V is an object in an Abelian C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}-linear braided bar category of real type, is a quantum complex space in this sense of a factorisable Dolbeault double complex. We combine the Chern construction on Ω1,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{1,0}$$\end{document} in such a Dolbeault complex for an algebra A with its conjugate to construct a canonical metric-compatible connection on Ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^1$$\end{document} associated with a class of quantum metrics, and apply this to the quantum plane. We also apply this to finite groups G with Cayley graph generators split into two halves related by inversion, constructing such a Dolbeault complex Ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (G)$$\end{document} in this case. This construction recovers the quantum Levi-Civita connection for any edge-symmetric metric on the integer lattice with Ω(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ({\mathbb {Z}})$$\end{document}, now viewed as a quantum complex structure on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}. We also show how to build natural quantum metrics on Ω1,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{1,0}$$\end{document} and Ω0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^{0,1}$$\end{document} separately, where the inner product in the case of the quantum plane, in order to descend to ⊗A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\otimes _A$$\end{document}, is taken with values in an A-bimodule.
引用
收藏
相关论文
共 1 条