CaV3.2 T-type calcium channels contribute to CGRP- induced allodynia in a rodent model of experimental migraine

被引:0
|
作者
Baggio, Darciane F. [1 ]
Gambeta, Eder [2 ,3 ]
Souza, Ivana A. [2 ,3 ]
Huang, Sun [2 ,3 ]
Zamponi, Gerald W. [2 ,3 ]
Chichorro, Juliana G. [1 ]
机构
[1] Univ Fed Parana, Dept Pharmacol, Biol Sci Sect, Curitiba, PR, Brazil
[2] Univ Calgary, Dept Clin Neurosci, Cumming Sch Med, Hotchkiss Brain Inst, Calgary, AB, Canada
[3] Univ Calgary, Alberta Childrens Hosp Res Inst, Cumming Sch Med, Calgary, AB, Canada
关键词
Voltage-gated calcium channels; Calcitonin gene-related peptide; RAMP-1; Periorbital mechanical allodynia; Mice; Trigeminal ganglion; Electrophysiology; TRIGEMINOVASCULAR SYSTEM; TRIGEMINAL GANGLION; GENE; ACTIVATION; RECEPTOR; NEURONS; SENSITIZATION; PEPTIDES; RELEASE; HUMANS;
D O I
10.1186/s10194-024-01921-0
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Migraine is a painful neurological syndrome characterized by attacks of throbbing headache, of moderate to severe intensity, which is associated with photo- and phono- sensitivity as well as nausea and vomiting. It affects about 15% of the world's population being 2-3 times more prevalent in females. The calcitonin gene-related peptide (CGRP) is a key mediator in the pathophysiology of migraine, and a significant advance in the field has been the development of anti-CGRP therapies. The trigeminal ganglion (TG) is thought to be an important site of action for these drugs. Moreover, experimental migraine can be induced by CGRP injection in the TG. The signaling pathway induced by CGRP in the TG is not fully understood, but studies suggest that voltage-gated calcium channels contribute to CGRP effects relevant to migraine. Objective We hypothesised that CGRP injection in the TG enhances Ca(V)3.2 T-type calcium channel currents to contribute to the development of periorbital mechanical allodynia. Results A Co-Immunoprecipitation assay in tsA-201 cells revealed that Ca(V)3.2 channels form a complex with RAMP-1, a component of the CGRP receptor. Constitutive CGRPR activity was able to inhibit Ca(V)3.2 channels and induce a depolarizing shift in both activation and inactivation curves. Incubation of TG neurons with CGRP increased T-type current density by similar to 3.6 fold, an effect that was not observed in TG neurons from Ca(V)3.2 knockout mice. Incubation of TG neurons with Z944, a pan T-type channel blocker, resulted in an approximately 80% inhibition of T-type currents. In vivo, this treatment abolished the development of periorbital mechanical allodynia induced by CGRP in male and female mice. Likewise, Ca(V)3.2 knockout mice did not develop periorbital mechanical allodynia after intraganglionic CGRP injection. Finally, we demonstrated that the CGRP effect depends on the activation of its canonical GPCR, followed by protein kinase A activation. Conclusion The present study suggests that CGRP modulates Ca(V)3.2 in the TG, an effect possibly mediated by the canonical CGRP receptor and PKA activation. The increase in T-type currents in the TG may represent a contributing factor for the initiation and maintenance of the headache pain during migraine.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Increased expression of CaV3.2 T-type calcium channels in damaged DRG neurons contributes to neuropathic pain in rats with spared nerve injury
    Kang, Xue-Jing
    Chi, Ye-Nan
    Chen, Wen
    Liu, Feng-Yu
    Cui, Shuang
    Liao, Fei-Fei
    Cai, Jie
    Wan, You
    MOLECULAR PAIN, 2018, 14
  • [22] Molecular Pharmacology of Human Cav3.2 T-Type Ca2+ Channels: Block by Antihypertensives, Antiarrhythmics, and Their Analogs
    Perez-Reyes, Edward
    Van Deusen, Amy L.
    Vitko, Iuliia
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2009, 328 (02) : 621 - 627
  • [23] Different distribution of Cav3.2 and Cav3.1 transcripts encoding T-type Ca2+ channels in the embryonic heart of mice
    Mizuta, Einosuke
    Shirai, Manabu
    Arakawa, Keita
    Hidaka, Kyoko
    Miake, Junichiro
    Ninomiya, Haruaki
    Kato, Masahiko
    Shigemasa, Chiaki
    Shirayoshi, Yasuaki
    Hisatome, Ichiro
    Morisaki, Takayuki
    BIOMEDICAL RESEARCH-TOKYO, 2010, 31 (05): : 301 - 305
  • [24] Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage- gated T-type calcium channels (Cav3.2) in paclitaxel- induced peripheral neuropathy
    Li, Yan
    Tatsui, Claudio Esteves
    Rhines, Laurence D.
    North, Robert Y.
    Harrison, Daniel S.
    Cassidy, Ryan M.
    Johansson, Caj A.
    Kosturakis, Alyssa K.
    Edwards, Denaya D.
    Zhang, Hongmei
    Dougherty, Patrick M.
    PAIN, 2017, 158 (03) : 417 - 429
  • [25] Neurotrophin-4 modulates the mechanotransducer Cav3.2 T-type calcium current in mice down-hair neurons
    Hilaire, Cecile
    Lucas, Olivier
    Valmier, Jean
    Scamps, Frederique
    BIOCHEMICAL JOURNAL, 2012, 441 : 463 - 471
  • [26] T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants
    Gangarossa, Giuseppe
    Laffray, Sophie
    Bourinet, Emmanuel
    Valjent, Emmanuel
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2014, 8
  • [27] Neuromedin B receptor stimulation of Cav3.2 T-type Ca2+ channels in primary sensory neurons mediates peripheral pain hypersensitivity
    Zhang, Yuan
    Qian, Zhiyuan
    Jiang, Dongsheng
    Sun, Yufang
    Gao, Shangshang
    Jiang, Xinghong
    Wang, Hua
    Tao, Jin
    THERANOSTICS, 2021, 11 (19): : 9342 - 9357
  • [28] CaV3.2 T-type Ca2+ channels in H2S-mediated hypoxic response of the carotid body
    Makarenko, Vladislav V.
    Peng, Ying-Jie
    Yuan, Guoxiang
    Fox, Aaron P.
    Kumar, Ganesh K.
    Nanduri, Jayasri
    Prabhakar, Nanduri R.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2015, 308 (02): : C146 - C154
  • [29] Upregulation of interleukin-6 on Cav3.2 T-type calcium channels in dorsal root ganglion neurons contributes to neuropathic pain in rats with spinal nerve ligation
    Liu, Qingying
    Chen, Wen
    Fan, Xiaocen
    Wang, Jiaxin
    Fu, Su
    Cui, Shuang
    Liao, Feifei
    Cai, Jie
    Wang, Xinhong
    Huang, Yanhua
    Su, Li
    Zhong, Lijun
    Yi, Ming
    Liu, Fengyu
    Wan, You
    EXPERIMENTAL NEUROLOGY, 2019, 317 : 226 - 243
  • [30] The Cav3.2 T-Type Ca2+ Channel Is Required for Pressure Overload-Induced Cardiac Hypertrophy in Mice
    Chiang, Chien-Sung
    Huang, Ching-Hui
    Chieng, Hockling
    Chang, Ya-Ting
    Chang, Dory
    Chen, Ji-Jr
    Chen, Yong-Cyuan
    Chen, Yen-Hui
    Shin, Hee-Sup
    Campbell, Kevin P.
    Chen, Chien-Chang
    CIRCULATION RESEARCH, 2009, 104 (04) : 522 - U194