STP Method for Solving the Least Squares Special Solutions of Quaternion Matrix Equations

被引:0
作者
Chen, Weihua [1 ]
Song, Caiqin [1 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Peoples R China
关键词
Least squares solution; Semi-tensor product of matrices; Real vector representation; Toeplitz matrix; Centrosymmetric matrix; SYSTEMS;
D O I
10.1007/s00006-024-01367-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we apply the semi-tensor product of matrices and the real vector representation of a quaternion matrix to find the least squares lower (upper) triangular Toeplitz solution of AX-XB=C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AX-XB=C$$\end{document}, AXB-CXTD=E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AXB-CX<^>{T}D=E$$\end{document} and (anti)centrosymmetric solution of AXB-CYD=E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AXB-CYD=E$$\end{document}. And the expressions of the least squares lower (upper) triangular Toeplitz and (anti)centrosymmetric solution for the studied equations are derived. Additionally, the necessary and sufficient conditions for the existence of solutions and general expression of the studied equations are given. Eventually, some numerical examples are provided for showing the validity and superiority of our method.
引用
收藏
页数:26
相关论文
共 33 条
  • [1] Exploring Quaternion Neural Network Loss Surfaces
    Bill, Jeremiah
    Cox, Bruce
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (03)
  • [2] STABILITY OF METHODS FOR SOLVING TOEPLITZ-SYSTEMS OF EQUATIONS
    BUNCH, JR
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (02): : 349 - 364
  • [3] Chen Deyan., 2012, An Introduction to Semi-tensor Product of Matrices and its Applications, P23, DOI [DOI 10.1142/8323, 10.1142/8323]
  • [4] Cheng Dai-zhanit, 2019, Control Theory & Applications, V36, P1812, DOI 10.7641/CTA.2019.90595
  • [5] A survey on semi-tensor product of matrices
    Cheng, Daizhan
    Qi, Hongsheng
    Xue, Ancheng
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2007, 20 (02) : 304 - 322
  • [6] From STP to game-based control
    Cheng, Daizhan
    Qi, Hongsheng
    Liu, Zequn
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (01)
  • [7] 铜铝复合板界面组织与性能
    程明阳
    王爱琴
    毛志平
    杨康
    马窦琴
    [J]. 河南科技大学学报(自然科学版), 2017, 38 (01) : 10 - 14+4
  • [8] Ding W., 2021, Journal of Liaocheng University(natural science edition), V34, P1, DOI [10.19728/j.issn1672-6634.2021.04.001, DOI 10.19728/J.ISSN1672-6634.2021.04.001]
  • [9] Ding W, 2021, ADV APPL CLIFFORD AL, V31, DOI 10.1007/s00006-021-01180-1
  • [10] Matrix representation of quaternions
    Farebrother, RW
    Gross, J
    Troschke, SO
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 : 251 - 255