Ultrafast pump-probe phase-randomized tomography

被引:0
|
作者
Glerean, Filippo [1 ,2 ,3 ]
Rigoni, Enrico Maria [1 ,2 ,4 ]
Jarc, Giacomo [1 ,2 ,4 ]
Mathengattil, Shahla Yasmin [1 ,2 ]
Montanaro, Angela [1 ,2 ,4 ]
Giusti, Francesca [1 ,2 ]
Mitrano, Matteo [3 ]
Benatti, Fabio [1 ,2 ,5 ]
Fausti, Daniele [1 ,2 ,4 ]
机构
[1] Univ Trieste, Dipartimento Fis, Trieste, Italy
[2] Sincrotrone Trieste SCpA, Basovizza, Italy
[3] Harvard Univ, Dept Phys, Cambridge, MA USA
[4] Univ Erlangen Nurnberg, Dept Phys, Erlangen, Germany
[5] Ist Nazl Fis Nucl, sez Trieste, Trieste, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
LIGHT-INDUCED SUPERCONDUCTIVITY; STATE TOMOGRAPHY; QUANTUM; STATISTICS; FERROELECTRICITY; SCATTERING;
D O I
10.1038/s41377-025-01789-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Measuring fluctuations in matter's low-energy excitations is the key to unveiling the nature of the non-equilibrium response of materials. A promising outlook in this respect is offered by spectroscopic methods that address matter fluctuations by exploiting the statistical nature of light-matter interactions with weak few-photon probes. Here we report the first implementation of ultrafast phase randomized tomography, combining pump-probe experiments with quantum optical state tomography, to measure the ultrafast non-equilibrium dynamics in complex materials. Our approach utilizes a time-resolved multimode heterodyne detection scheme with phase-randomized coherent ultrashort laser pulses, overcoming the limitations of phase-stable configurations and enabling a robust reconstruction of the statistical distribution of phase-averaged optical observables. This methodology is validated by measuring the coherent phonon response in alpha-quartz. By tracking the dynamics of the shot-noise limited photon number distribution of few-photon probes with ultrafast resolution, our results set an upper limit to the non-classical features of phononic state in alpha-quartz and provide a pathway to access non-equilibrium quantum fluctuations in more complex quantum materials.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Pump-probe nonlinear phase dispersion spectroscopy
    Robles, Francisco E.
    Samineni, Prathyush
    Wilson, Jesse W.
    Warren, Warren S.
    OPTICS EXPRESS, 2013, 21 (08): : 9353 - 9364
  • [2] Ultrafast transient interference in pump-probe spectroscopy of band and Mott insulators
    Shinjo, Kazuya
    Tohyama, Takami
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [3] Excitonic precursor states in ultrafast pump-probe spectroscopies of surface bands
    Gumhalter, Branko
    Lazic, Predrag
    Doslic, Nadja
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (08): : 1907 - 1919
  • [4] Detection of squeezed phonons in pump-probe spectroscopy
    Lakehal, Massil
    Schiro, Marco
    Eremin, Ilya M.
    Paul, Indranil
    PHYSICAL REVIEW B, 2020, 102 (17)
  • [5] Interface-induced magnetic coupling in multiferroic/ferromagnetic bilayer: An ultrafast pump-probe study
    La-o-Vorakiat, C.
    Tian, Y.
    Wu, T.
    Panagopoulos, C.
    Zhu, J-X
    Su, Haibin
    Chia, Elbert E. M.
    APPLIED PHYSICS LETTERS, 2014, 104 (14)
  • [6] Calculating time-resolved differential absorbance spectra for ultrafast pump-probe experiments with surface hopping trajectories
    Petit, Andrew S.
    Subotnik, Joseph E.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (15)
  • [7] Carrier-envelope phase-locked pump-probe experiment for independent phase/delay manipulation
    Adachi, Shunsuke
    Ozawa, Akira
    Kobayashi, Takayoshi
    CHEMICAL PHYSICS LETTERS, 2010, 489 (1-3) : 130 - 133
  • [8] Signatures of Fractional Statistics in Nonlinear Pump-Probe Spectroscopy
    McGinley, Max
    Fava, Michele
    Parameswaran, S. A.
    PHYSICAL REVIEW LETTERS, 2024, 132 (06)
  • [9] Nonequilibrium dynamics in the pump-probe spectroscopy of excitonic insulators
    Tanabe, Tetsuhiro
    Sugimoto, Koudai
    Ohta, Yukinori
    PHYSICAL REVIEW B, 2018, 98 (23)
  • [10] Manipulating the non-Gaussianity of phase-randomized coherent states
    Allevi, Alessia
    Olivares, Stefano
    Bondani, Maria
    OPTICS EXPRESS, 2012, 20 (22): : 24850 - 24855