Design tools to stabilize and to synchronize fractional-order energy resources system based on fractional-order control approaches: a review

被引:0
|
作者
Soukkou, Ammar [1 ]
Soukkou, Yassine [2 ]
Haddad, Sofiane [1 ]
Lekouaghet, Badis [2 ]
Benghanem, Mohamed [3 ]
机构
[1] Jijel Univ, Fac Sci & Technol, Renewable Energy Lab, Jijel 18000, Algeria
[2] Res Ctr Ind Technol CRTI, Algiers 16014, Algeria
[3] Islamic Univ Madinah, Fac Sci, Phys Dept, Madinah, Saudi Arabia
关键词
Fractional-order systems; Fractional-order chaotic and hyperchaotic systems; Lyapunov stability theory; PD-based feedback control; Multiobjective optimization; Gazelle optimization algorithm; Stabilization and synchronization; Energy resources demand-supply hyperchaotic system; DELAYED FEEDBACK-CONTROL; CHAOTIC SYSTEMS; NONLINEAR-SYSTEMS; PROJECTIVE SYNCHRONIZATION; LYAPUNOV FUNCTIONS; IMPLEMENTATION; REALIZATION; ALGORITHM;
D O I
10.1007/s40430-025-05441-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, a review of fractional-order calculus (F-oC), fractional-order systems (F-oSs), fractional-order chaotic and hyperchaotic systems (F-oCHSs) as a special case of F-oSs is considered. Modeling, simulation and control using the concept of F-oC, as advanced control technique, of F-oCHSs and stability analysis strategies are addressed. As a case study, the paper proposes a stable feedback control strategy based on the so called fractional-order PD controller (F-oPDC) with an adequate knowledge base for synchronization and/or stabilization a large class of F-oCHSs. The stability analysis is performed using Lyapunov stability theories and a recent stability hypothesis and assumptions of F-oSs. The 'optimal' knowledge base of the proposed F-oPDC, while meeting design requirements, is obtained based on a nature-inspired optimization method named gazelle optimization algorithm inspired from the 'gazelles' survival ability in their predator-dominated environment. Accordingly, the proposed design approach offers a good compromise between simplicity of implementation, faster convergence speed, higher tracking precision, robustness to uncertainties and energy efficiency, computational time, stability and accuracy for the case of controlling F-oCHSs. Ultimately, results of simulations are presented to illustrate both the feasibility and efficacy of the proposed strategy, by taking the fractional-order energy resources demand-supply (FoER-DS) hyperchaotic system as an example.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] An Unknown Input Fractional-Order Observer Design for Fractional-Order Glucose-Insulin System
    N'Doye, Ibrahima
    Voos, Holger
    Darouach, Mohamed
    Schneider, Jochen G.
    Knauf, Nicolas
    2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [22] Design of a fractional-order fuzzy PI controller for fractional-order chaotic systems
    Han, Wei
    Gao, Bingkun
    Guo, Haoxuan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4825 - 4830
  • [23] Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
    Zhu, Darui
    Liu, Ling
    Liu, Chongxin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 787 - 791
  • [24] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
    Yang, Ningning
    Han, Yuchao
    Wu, Chaojun
    Jia, Rong
    Liu, Chongxin
    CHINESE PHYSICS B, 2017, 26 (08)
  • [25] Fractional-order Fixed-time Nonsingular Backstepping Control of an Incommensurate Fractional-order Ferroresonance System
    Li, Xiaoteng
    Wang, Yan
    Liu, Ling
    Liu, Chongxin
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 818 - 823
  • [26] Bifurcation control of a fractional-order PD control strategy for a delayed fractional-order prey-predator system
    Lu, Lu
    Huang, Chengdai
    Song, Xinyu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (01):
  • [27] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
    杨宁宁
    韩宇超
    吴朝俊
    贾嵘
    刘崇新
    Chinese Physics B, 2017, (08) : 78 - 90
  • [28] Modeling and fractional-order adaptive nonsingular terminal sliding mode control for fractional-order ferroresonance system
    Wu Chaojun
    Han Yuchao
    Yang Ningning
    Xu Cheng
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11368 - 11373
  • [29] Embedded adaptive fractional-order sliding mode control based on TSK fuzzy system for nonlinear fractional-order systems
    Esraa Mostafa
    Osama Elshazly
    Mohammad El-Bardini
    Ahmad M. El-Nagar
    Soft Computing, 2023, 27 : 15463 - 15477
  • [30] Fractional-order memristor-based chaotic jerk system with no equilibrium point and its fractional-order backstepping control
    Prakash, Pankaj
    Singh, Jay Prakash
    Roy, B. K.
    IFAC PAPERSONLINE, 2018, 51 (01): : 1 - 6