Binary phase-only gallium oxide diffractive optical element for beam shaping

被引:1
作者
Jia, Wei [1 ]
Blair, Steve [1 ]
Sensale-Rodriguez, Berardi [1 ]
机构
[1] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
美国国家科学基金会;
关键词
Binary phase; Gallium oxide; Diffractive optical element; Beam shaping;
D O I
10.1038/s41598-025-89663-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study presents an experimentally validated demonstration of an inverse-optimized binary phase-only gallium oxide diffractive optical element (DOE). This DOE transforms an incident Gaussian beam into a square flat-top beam at the working plane. The design methodology for this binary phase-only DOE beam shaper is founded on an efficient process that integrates the modified Gerchberg-Saxton algorithm and the adjoint method. Experimental characterization of the fabricated device on a single crystal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:\left(\stackrel{-}{2}01\right)\:$$\end{document}gallium oxide substrate is conducted at a wavelength of 532 nm, confirming its ability to transform an incident Gaussian beam into a focused square flat-top beam. Such a device holds significant promise for various high-power laser applications, notably in laser welding and similar domains. Furthermore, because of the ultrawide bandgap of gallium oxide, DOEs operating at shorter wavelengths in the UV are also possible based on this technique.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Randomly Multiplexed Diffractive Lens and Axicon for Spatial and Spectral Imaging [J].
Anand, Vijayakumar ;
Katkus, Tomas ;
Juodkazis, Saulius .
MICROMACHINES, 2020, 11 (04)
[2]   Single-point diamond turning and replication of visible and near-infrared diffractive optical elements [J].
Blough, CG ;
Rossi, M ;
Mack, SK ;
Michaels, RL .
APPLIED OPTICS, 1997, 36 (20) :4648-4654
[3]   Multiscale, multifunction diffractive structures wet etched into fused silica for high-laser damage threshold applications [J].
Britten, JA ;
Summers, LJ .
APPLIED OPTICS, 1998, 37 (30) :7049-7054
[4]  
Chen H., 2021, Diffractive Deep Neural Networks Visible Wavelengths Eng, V7, P1483
[5]   Gallium Oxide for High-Power Optical Applications [J].
Deng, Huiyang ;
Leedle, Kenneth J. ;
Miao, Yu ;
Black, Dylan S. ;
Urbanek, Karel E. ;
McNeur, Joshua ;
Kozak, Martin ;
Ceballos, Andrew ;
Hommelhoff, Peter ;
Solgaard, Olav ;
Byer, Robert L. ;
Harris, James S. .
ADVANCED OPTICAL MATERIALS, 2020, 8 (07)
[6]   3D printed diffractive terahertz lenses [J].
Furlan, Walter D. ;
Ferrando, Vicente ;
Monsoriu, Juan A. ;
Zagrajek, Przemyslaw ;
Czerwinska, Bieta ;
Szustakowski, Mieczyslaw .
OPTICS LETTERS, 2016, 41 (08) :1748-1751
[8]  
GERCHBERG RW, 1972, OPTIK, V35, P237
[9]   Impact ionization in β-Ga2O3 [J].
Ghosh, Krishnendu ;
Singisetti, Uttam .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (08)
[10]  
Goodman J. W., 2005, Introduction to Fourier optics