Integration of wind flow effects in theoretical and experimental models for solar power generation

被引:0
作者
Mundu, M. M. [1 ]
Sempewo, J. I. [2 ]
Nnamchi, S. N. [3 ]
Mahoro, Gloria Brenda [4 ]
Uti, Daniel Ejim [5 ]
机构
[1] Kampala Int Univ, Sch Engn & Appl Sci, Dept Elect Telecommun & Comp Engn, POB 20000, Kampala, Uganda
[2] Makerere Univ, Coll Engn Design Art & Technol, Dept Civil & Environm Engn, POB 7062, Kampala, Uganda
[3] Kampala Int Univ, Sch Engn & Appl Sci, Dept Mech Engn, POB 20000, Kampala, Uganda
[4] Kampala Int Univ, Dept Biol & Environm Sci, Kampala, Uganda
[5] Kampala Int Univ, Dept Res & Publicat, PO, Box 20000, Kampala, Uganda
关键词
Solar power generation; Modeling; Wind flow effects; Model validation; Sustainable development goals (SDGs); PERFORMANCE; TEMPERATURE; SYSTEM; IMPACT; STATE;
D O I
10.1038/s41598-025-90680-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The increasing demand for sustainable energy solutions has highlighted the need to optimize solar power generation systems. While solar power has been extensively studied, the influence of local wind flow on solar irradiance and power generation remains underexplored. This study addresses this gap by developing a differential model that incorporates both solar irradiance and wind flow effects to enhance the prediction of solar power generation across various regions in Uganda. Key qualitative findings suggest that regions with higher wind flow significantly enhance solar power efficiency, revealing potential opportunities for optimizing solar facility locations. Numerical findings show that the northern region yielded the highest solar power generation (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$132.8 \,{\text{Wm}}<^>{-2}$$\end{document}), followed closely by the eastern (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$132.7 \, {\text{Wm}}<^>{-2}$$\end{document}), western (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$127.2 \, {\text{Wm}}<^>{-2}$$\end{document}), and central (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$119.6 \,{\text{Wm}}<^>{-2}$$\end{document}) regions. Error analysis using the RMSE indicator confirms the validity of the model with values of 0.9701, 0.8215, and 6.4186 for the northern, central, and western regions, respectively. This work proposes an integrated approach to solar power generation, considering both solar irradiance and wind flow effects, with the potential to identify optimal deployment sites for solar facilities. Consequently, the study suggests deploying solar facilities in regions with higher solar power distribution and transmitting energy to areas with sparse distribution. Further studies are needed to conduct a comprehensive assessment of solar potential in varying environmental conditions.
引用
收藏
页数:13
相关论文
共 62 条
[21]  
Green MA, 2018, PROG PHOTOVOLTAICS, V26, P3, DOI [10.1002/pip.2978, 10.1002/pip.3102]
[22]   Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions [J].
Guarracino, Ilaria ;
Freeman, James ;
Ramos, Alba ;
Kalogirou, Soteris A. ;
Ekins-Daukes, Nicholas J. ;
Markides, Christos N. .
APPLIED ENERGY, 2019, 240 :1014-1030
[23]   Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation [J].
Hosenuzzaman, M. ;
Rahim, N. A. ;
Selvaraj, J. ;
Hasanuzzaman, M. ;
Malek, A. B. M. A. ;
Nahar, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 41 :284-297
[24]   Detection of Degradation Effects in Field-Aged c-Si Solar Cells through IR Thermography and Digital Image Processing [J].
Kaplani, E. .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2012, 2012
[25]  
Katongole DN, 2023, Tanzania Journal of Science, V49, P1, DOI [10.4314/tjs.v49i1.1, 10.4314/tjs.v49i1.1, DOI 10.4314/TJS.V49I1.1]
[26]   Solar power technologies for sustainable electricity generation - A review [J].
Khan, Jibran ;
Arsalan, Mudassar H. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 55 :414-425
[27]  
Kumar Mahesh, 2020, 2020 International Conference on Electrical and Electronics Engineering (ICE3), P639, DOI 10.1109/ICE348803.2020.9122812
[28]   Economic impacts of wind and solar photovoltaic power development in China [J].
Li, Yanxia ;
Cai, Wenjia ;
Wang, Can .
8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 :3440-3448
[29]   Coupled modelling and simulation of power transmission lines: A systematic analysis of line losses [J].
Living, O. ;
Nnamchi, S. N. ;
Mundu, M. M. ;
Ukagwu, K. J. ;
Abdulkarim, A. .
ELECTRIC POWER SYSTEMS RESEARCH, 2024, 226
[30]  
Louwen A., 2020, System, V65, P86, DOI [10.1016/B978-0-12-818762-3.00005-4, DOI 10.1016/B978-0-12-818762-3.00005-4]