Integration of wind flow effects in theoretical and experimental models for solar power generation

被引:0
作者
Mundu, M. M. [1 ]
Sempewo, J. I. [2 ]
Nnamchi, S. N. [3 ]
Mahoro, Gloria Brenda [4 ]
Uti, Daniel Ejim [5 ]
机构
[1] Kampala Int Univ, Sch Engn & Appl Sci, Dept Elect Telecommun & Comp Engn, POB 20000, Kampala, Uganda
[2] Makerere Univ, Coll Engn Design Art & Technol, Dept Civil & Environm Engn, POB 7062, Kampala, Uganda
[3] Kampala Int Univ, Sch Engn & Appl Sci, Dept Mech Engn, POB 20000, Kampala, Uganda
[4] Kampala Int Univ, Dept Biol & Environm Sci, Kampala, Uganda
[5] Kampala Int Univ, Dept Res & Publicat, PO, Box 20000, Kampala, Uganda
关键词
Solar power generation; Modeling; Wind flow effects; Model validation; Sustainable development goals (SDGs); PERFORMANCE; TEMPERATURE; SYSTEM; IMPACT; STATE;
D O I
10.1038/s41598-025-90680-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The increasing demand for sustainable energy solutions has highlighted the need to optimize solar power generation systems. While solar power has been extensively studied, the influence of local wind flow on solar irradiance and power generation remains underexplored. This study addresses this gap by developing a differential model that incorporates both solar irradiance and wind flow effects to enhance the prediction of solar power generation across various regions in Uganda. Key qualitative findings suggest that regions with higher wind flow significantly enhance solar power efficiency, revealing potential opportunities for optimizing solar facility locations. Numerical findings show that the northern region yielded the highest solar power generation (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$132.8 \,{\text{Wm}}<^>{-2}$$\end{document}), followed closely by the eastern (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$132.7 \, {\text{Wm}}<^>{-2}$$\end{document}), western (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$127.2 \, {\text{Wm}}<^>{-2}$$\end{document}), and central (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$119.6 \,{\text{Wm}}<^>{-2}$$\end{document}) regions. Error analysis using the RMSE indicator confirms the validity of the model with values of 0.9701, 0.8215, and 6.4186 for the northern, central, and western regions, respectively. This work proposes an integrated approach to solar power generation, considering both solar irradiance and wind flow effects, with the potential to identify optimal deployment sites for solar facilities. Consequently, the study suggests deploying solar facilities in regions with higher solar power distribution and transmitting energy to areas with sparse distribution. Further studies are needed to conduct a comprehensive assessment of solar potential in varying environmental conditions.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Estimating Market Potential for Solar Photovoltaic Systems in Uganda [J].
Aarakit, Sylvia Manjeri ;
Ssennono, Vincent Fred ;
Adaramola, Muyiwa S. .
FRONTIERS IN ENERGY RESEARCH, 2021, 9
[2]   Potential impacts of climate change on global solar radiation and PV output using the CMIP6 model in West Africa [J].
Agbor, Mfongang Erim ;
Udo, Sunday O. ;
Ewona, Igwe O. ;
Nwokolo, Samuel Chukwujindu ;
Ogbulezie, Julie C. ;
Amadi, Solomon Okechukwu .
CLEANER ENGINEERING AND TECHNOLOGY, 2023, 13
[3]  
Alsema EA, 2006, MATER RES SOC SYMP P, V895, P73
[4]  
[Anonymous], 2013, Study of the effects of dust, relative humidity, and temperature on solar PV performance in Doha: Comparison between monocrystalline and amorphous PVS
[5]   Solar chimney power plant performance in Iran [J].
Asnaghi, A. ;
Ladjevardi, S. M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (05) :3383-3390
[6]   Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants [J].
Babatunde, A. A. ;
Abbasoglu, S. ;
Senol, M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 90 :1017-1026
[7]   Re-considering the economics of photovoltaic power [J].
Bazilian, Morgan ;
Onyeji, Ijeoma ;
Liebreich, Michael ;
MacGill, Ian ;
Chase, Jennifer ;
Shah, Jigar ;
Gielen, Dolf ;
Arent, Doug ;
Landfear, Doug ;
Shi Zhengrong .
RENEWABLE ENERGY, 2013, 53 :329-338
[8]   Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future-A Comprehensive Review [J].
Chala, Girma T. ;
Al Alshaikh, Shamsa M. .
ENERGIES, 2023, 16 (24)
[9]   The Photovoltaic Generation System Impact on the Energy Demand of a Small Island and Its Financial Analysis [J].
Chen, Chao-Shun ;
Hsu, Cheng-Ting ;
Korimara, Roman .
2011 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY ENGINEERING (ICAEE), 2012, 14 :411-417
[10]  
Chu Y., 2011, Review and Comparison of Different Solar Energy Technologies