Comprehensive study of pulse shape discrimination in a Ga-doped zinc oxide scintillating detector

被引:0
|
作者
Zhao, Kuo [1 ]
Chen, Liang [2 ]
Lv, Ning [1 ]
Zhou, Lei-Dang [3 ]
He, Shi-Yi [2 ]
Ruan, Jin-Lu [2 ]
Wang, Han [1 ]
Ouyang, Xiao-Ping [2 ]
机构
[1] Xian Res Inst Hitech, Xian 710025, Peoples R China
[2] Northwest Inst Nucl Technol, Xian 710024, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Microelect, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc oxide; Scintillation crystal; Pulse shape discrimination; Radiation luminescence; Pulsed neutron radiation field; NEUTRON; REDUCTION; CRYSTAL; DRIVEN; ALPHA; TIME;
D O I
10.1007/s41365-024-01600-4
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Doping with Ga effectively enhances the crystal quality and optical detection efficiency of zinc oxide (ZnO) single crystals, which has attracted considerable research interest in radiation detection. The application of ZnO:Ga (GZO) in nuclear energy is particularly significant and fascinating at the fundamental level, enabling neutron/gamma discrimination while preserving the response time properties of the single crystal in sub-nanoseconds, maximizing the effective counting rate of the pulsed radiation field. In this study, the single-particle waveform discrimination characteristics of GZO were evaluated for five charged particles (alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}, H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}<^>+$$\end{document},Li+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}<^>+$$\end{document}, and O8+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}<^>{8+}$$\end{document} and two prevalent uncharged particles (neutrons and gamma rays). Based on the time-correlation single-photon counting (TCSPC) method, the luminescence decay time constants of the charged particles in the GZO crystal were determined as follows: 1.21 ns for H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}<^>+$$\end{document}, 1.50 ns for Li+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}<^>+$$\end{document}, 1.70 ns for O8+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}<^>{8+}$$\end{document}, 1.56 ns for alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} particles, and 1. 09 ns for beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} particles. Visible differences in the excitation time spectra curves were observed. Using the conventional time-domain or frequency-domain waveform discrimination techniques, waveform discrimination of 14.9 MeV neutrons and secondary gamma rays generated by the CPNG-6 device based on GZO scintillation was successfully implemented. The neutron signal constituted 77.93% of the total, indicating that GZO exhibited superior neutron/gamma discrimination sensitivity compared with that of a commercial stilbene crystal. Using the neutron/gamma screening outcomes, we reconstructed the voltage pulse height, charge height, and neutron multiplication time spectra of the pulsed neutron radiation field. The reconstructed neutron multiplication time spectrum exhibited a deviation of less than 3% relative to the result obtained using a commercial stilbene scintillator. This is the first report in the open literature on the neutron/gamma discrimination and reconstruction of ZnO pulsed radiation-field information.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Properties of Al- and Ga-doped thin zinc oxide films treated with UV laser radiation
    Hayder J. Al-Asedy
    Shuruq A. Al-Khafaji
    Hazri Bakhtiar
    Noriah Bidin
    Applied Physics A, 2018, 124
  • [22] Transparent Ga-doped zinc oxide-based window heaters fabricated by pulsed laser deposition
    Ahn, Byung Du
    Oh, Sang Hoon
    Hong, Dae Ung
    Shin, Dong Hyuk
    Moujoud, Abderrafia
    Kim, Hyun Jae
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (14) : 3303 - 3307
  • [23] Effect of solvents and stabilizers on sol-gel deposition of Ga-doped zinc oxide TCO films
    Winer, Ido
    Shter, Gennady E.
    Mann-Lahav, Meirav
    Grader, Gideon S.
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (10) : 1309 - 1315
  • [24] Synthesis of highly crystalline Ga-doped zinc-oxide nanoparticles for hybrid polymer solar cells
    Hye-Jeong Park
    Kang Hyuck Lee
    Ivaturi Sameera
    Sang-Woo Kim
    Journal of the Korean Physical Society, 2015, 66 : 1422 - 1425
  • [25] Oxide ion conductivity in Ga-doped Aurivillius phases - a reappraisal
    Snedden, A
    Blake, SM
    Lightfoot, P
    SOLID STATE IONICS, 2003, 156 (03) : 439 - 445
  • [26] Silver-Doped LiI Crystal: A Sensitive Thermal Neutron Detector With Pulse Shape Discrimination
    Vuong, Phan Quoc
    Kim, H. J.
    Khan, Arshad
    Khan, Sajid
    Kim, S. H.
    Park, Hyeonseo
    Kim, Jungho
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (10) : 2290 - 2294
  • [27] Near threshold pulse shape discrimination techniques in scintillating CsI(Tl) crystals
    Wu, SC
    Yue, Q
    Lai, WP
    Li, HB
    Li, J
    Lin, ST
    Liu, Y
    Singh, V
    Wang, MZ
    Wong, HT
    Xin, B
    Zhou, ZY
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 523 (1-2): : 116 - 125
  • [28] Improving the Performance of an SPR Biosensor Using Long-Range Surface Plasmon of Ga-Doped Zinc Oxide
    Ruan, Banxian
    You, Qi
    Zhu, Jiaqi
    Wu, Leiming
    Guo, Jun
    Dai, Xiaoyu
    Xiang, Yuanjiang
    SENSORS, 2018, 18 (07)
  • [29] Visible-transparent and UV/IR-opaque colloidal dispersions of Ga-doped zinc oxide nanoparticles
    Trenque, I.
    Gaudon, M.
    Duguet, E.
    Mornet, S.
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (08) : 7204 - 7209
  • [30] Pulse shape discrimination of charged particles with a silicon strip detector
    Lu, J
    Figuera, P
    Amorini, F
    Cardella, G
    DiPietro, A
    Musumarra, A
    Papa, M
    Papalardo, G
    Rizzo, F
    Tudisco, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 471 (03): : 374 - 379